More probability

Joint distributions
For an expression with n boolean variables e.g. $P(X_1, X_2, \ldots, X_n)$ how many entries will be in the probability table?
- 2^n

Does this always have to be the case?

Independence
Two variables are independent if one has nothing whatever to do with the other

For two independent variables, knowing the value of one does not change the probability distribution of the other variable (or the probability of any individual event)
- the result of the toss of a coin is independent of a roll of a dice
- price of tea in England is independent of the whether or not you pass AI

Admin
- Assignment 4 out
 - Work in partners
 - Part 1 due by Thursday at the beginning of class
- Midterm exam time
 - Review next Tuesday
Independent or Dependent?

- Catching a cold and having cat-allergy
- Miles per gallon and driving habits
- Height and longevity of life

Independent variables

How does independence affect our probability equations/properties?

If \(A \) and \(B \) are independent (written …)
- \(P(A, B) = P(A)P(B) \)
- \(P(A|B) = P(A) \)
- \(P(B|A) = P(B) \)

Independent variables

If \(A \) and \(B \) are independent
- \(P(A, B) = P(A)P(B) \)
- \(P(A|B) = P(A) \)
- \(P(B|A) = P(B) \)

Reduces the storage requirement for the distributions

Conditional Independence

Dependent events can become independent given certain other events

Examples.
- height and length of life
- "correlation" studies
 - size of your lawn and length of life

If \(A, B \) are conditionally independent of \(C \)
- \(P(A,B|C) = P(A|C)P(B|C) \)
- \(P(A|B,C) = P(A|C) \)
- \(P(B|A,C) = P(B|C) \)
- but \(P(A,B) \neq P(A)P(B) \)
Bayes nets are a way of representing joint distributions

- Directed, acyclic graphs
- Nodes represent random variables
- Directed edges represent dependence
- Associated with each node is a conditional probability distribution
 - $P(X | \text{parents}(X))$
- They encode dependences/independences

Cavities

$P(W, CY, T, CH) = P(W)P(CY)P(T | CY)P(CH | CY)$

What independences are encoded (both unconditional and conditional)?

Weather is independent of all variables

Toothache and Catch are conditionally independent GIVEN Cavity

Does this help us in storing the distribution?
Why all the fuss about independences?

Basic joint distribution
- $2^4 = 16$ entries

With independences?
- $2 + 2 + 4 + 4 = 12$
- If we’re sneaky: $1 + 1 + 2 + 2 = 6$
- Can be much more significant as number of variables increases!

Another Example

Question: Is the family next door out?

Variables that give information about this question:
- DO: is the dog outside?
- FO: is the family out (away from home)?
- LO: are the lights on?
- BP: does the dog have a bowel problem?
- HB: can you hear the dog bark?
Exploit Conditional Independence

Which variables are directly dependent?

Variables that give information about this question:
- DO: is the dog outside?
- FO: is the family out (away from home)?
- LO: are the lights on?
- BP: does the dog have a bowel problem?
- HB: can you hear the dog bark?

Are LO and DO independent?
What if you know that the family is away?

Are HB and FO independent?
What if you know that the dog is outside?

Some options
- lights (LO) depends on family out (FO)
- dog out (DO) depends on family out (FO)
- barking (HB) depends on dog out (DO)
- dog out (DO) depends on bowels (BP)

What would the network look like?

Bayesian Network Example

Graph structure represents direct influences between variables
(Can think of it as causality—but it doesn’t have to be)

Learning from Data
As an agent interacts with the world, it should learn about its environment.

We've already seen one example...

Number of times an event occurs in the data
Total number of times experiment was run (total number of data collected)

\[
P(\text{rock}) = \frac{4}{10} = 0.4
\]

\[
P(\text{rock} | \text{scissors}) = \frac{2}{4} = 0.5
\]

\[
P(\text{rock} | \text{scissors, scissors, scissors}) = \frac{1}{1} = 1.0
\]

Lots of different learning problems

Unsupervised learning: put these into groups
Lots of different learning problems

Unsupervised learning: put these into groups
No explicit labels/categories specified

Lots of learning problems

Supervised learning: given labeled data
APPLES BANANAS

Lots of learning problems

Given labeled examples, learn to label unlabeled examples
APPLE or BANANA?

Lots of learning problems

Many others
- semi-supervised learning: some labeled data and some unlabeled data
- active learning: unlabeled data, but we can pick some examples to be labeled
- reinforcement learning: maximize a cumulative reward. Learn to drive a car, reward = not crashing

and variations
- online vs. offline learning: do we have access to all of the data or do we have to learn as we go
- classification vs. regression: are we predicting between a finite set or are we predicting a score/value
Supervised learning: training

Labeled data
Data Label
0 0
0 0
1 1
1 1
0 0
train a predictive model

Supervised learning: testing/classifying

Unlabeled data
labels
1 1
0 0
0 0
1 1
0 0
predict the label

Training

Labeled data
Data Label
not spam not spam
not spam not spam
spam spam
spam spam
not spam not spam
train a predictive model

testing/classifying

Unlabeled data
e-mails
labels
spam spam
not spam not spam
not spam not spam
spam spam
not spam not spam
predict the label
Some examples

image classification
- does the image contain a person? apple? banana?

text classification
- is this a good/bad review?
- is this article about sports or politics?
- is this e-mail spam?

character recognition
- is this set of scribbles an 'a', 'b', 'c', ...

credit card transactions
- fraud or not?

audio classification
- hit or not?
- jazz, pop, blues, rap, ...

Tons of problems!!!

Features

<table>
<thead>
<tr>
<th>Raw data</th>
<th>Label</th>
<th>features</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>t_1, t_2, t_3, ..., t_n</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>t_1, t_2, t_3, ..., t_n</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>t_1, t_2, t_3, ..., t_n</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>t_1, t_2, t_3, ..., t_n</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>t_1, t_2, t_3, ..., t_n</td>
</tr>
</tbody>
</table>

We're given "raw data", e.g. text documents, images, audio, ...

Need to extract "features" from these (or to think of it another way, we somehow need to represent these things)

What might be features for: text, images, audio?

Examples

<table>
<thead>
<tr>
<th>Raw data</th>
<th>Label</th>
<th>features</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>t_1, t_2, t_3, ..., t_n</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>t_1, t_2, t_3, ..., t_n</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>t_1, t_2, t_3, ..., t_n</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>t_1, t_2, t_3, ..., t_n</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>t_1, t_2, t_3, ..., t_n</td>
</tr>
</tbody>
</table>

Terminology: An example is a particular instantiation of the features (generally derived from the raw data). A labeled example, has an associated label while an unlabeled example does not.

Feature based classification

Training or learning phase

<table>
<thead>
<tr>
<th>Raw data</th>
<th>Label</th>
<th>features</th>
<th>Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>t_1, t_2, t_3, ..., t_n</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>t_1, t_2, t_3, ..., t_n</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>t_1, t_2, t_3, ..., t_n</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>t_1, t_2, t_3, ..., t_n</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>t_1, t_2, t_3, ..., t_n</td>
<td>0</td>
</tr>
</tbody>
</table>

We train a predictive model

Training examples
Feature based classification

Testing or classification phase

Raw data → extract features → predict the label

Bayesian Classification

We represent a data item based on the features:

\[D = \{ f_1, f_2, \ldots, f_n \} \]

Training

\[a: p(a \mid D) = p(a \mid f_1, f_2, \ldots, f_n) \]

\[b: p(b \mid D) = p(b \mid f_1, f_2, \ldots, f_n) \]

For each label/class, learn a probability distribution based on the features

Bayesian Classification

We represent a data item based on the features:

\[D = \{ f_1, f_2, \ldots, f_n \} \]

Classifying

\[p(Label \mid f_1, f_2, \ldots, f_n) \]

How do we use this to classify a new example?

For each label/class, learn a probability distribution based on the features

Given a new example, classify it as the label with the largest conditional probability
Bayesian Classification

We represent a data item based on the features:

\[D = \{ f_1, f_2, \ldots, f_n \} \]

Classifying

\[p(\text{Label} \mid f_1, f_2, \ldots, f_n) \]

How do we use this to classify a new example?

For each label/class, learn a probability distribution based on the features

Training a Bayesian Classifier

<table>
<thead>
<tr>
<th>features</th>
<th>Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f_1), (f_2), (f_3), \ldots, (f_n)</td>
<td>0</td>
</tr>
<tr>
<td>(f_1), (f_2), (f_3), \ldots, (f_n)</td>
<td>0</td>
</tr>
<tr>
<td>(f_1), (f_2), (f_3), \ldots, (f_n)</td>
<td>1</td>
</tr>
<tr>
<td>(f_1), (f_2), (f_3), \ldots, (f_n)</td>
<td>1</td>
</tr>
</tbody>
</table>

How are we going to learn these?

Bayes rule for classification

\[P(\text{Label} \mid \text{Features}) = \frac{\text{number with features with label}}{\text{total number of items with features}} \]

Is this ok?

Very sparse! Likely won’t have many with particular set of features.
Training a Bayesian Classifier

Bayes rule for classification

\[P(\text{Label} \mid \text{Features}) = \frac{P(F \mid L)P(L)}{P(F)} \]

Bayes rule for classification

\[p(f_1, f_2, \ldots, f_n \mid \text{Label}) = \frac{\text{number with features with label}}{\text{total number of items with label}} \]

How are we going to learn these?

Is this ok?
Bayes rule for classification

\[p(f_1, f_2, \ldots, f_n | \text{Label}) = \frac{\text{number with features with label}}{\text{total number of items with label}} \]

Better (at least denominator won’t be sparse), but still unlikely to see any given feature combination.

The Naive Bayes Classifier

Conditional Independence Assumption: features are independent of each other given the class:

\[P(f_1, \ldots, f_n | \text{Label}) = P(f_1 | \text{Label})P(f_2 | \text{Label}) \cdots P(f_n | \text{Label}) \]

\[\text{label} = \text{argmax}_{l \in \text{Labels}} P(f_1 | l)P(f_2 | l) \cdots P(f_n | l)P(l) \]

Estimating parameters

\[\text{label} = \text{argmax}_{l \in \text{Labels}} P(f_1 | l)P(f_2 | l) \cdots P(f_n | l)P(l) \]

How do we estimate these?

Maximum likelihood estimates

\[\hat{P}(l) = \frac{N(l)}{N} \quad \text{number of items with label} \quad \text{total number of items} \]

\[\hat{P}(f_i | l) = \frac{N(f_i, l)}{N(l)} \quad \text{number of items with the label with feature} \quad \text{number of items with label} \]

Any problems with this approach?
Naïve Bayes Text Classification

How can we classify text using a Naïve Bayes classifier?

Features: word occurring in a document (though others could be used...)

\[
\text{label} = \arg\max_{L \in \text{Labels}} P(\text{word}_1 | L)P(\text{word}_2 | L) \ldots P(\text{word}_n | L)P(L)
\]

Naïve Bayes Text Classification

Does the Naïve Bayes assumption hold?

Are word occurrences independent given the label?

We'll look at a few application for this homework
– sentiment analysis: positive vs. negative reviews
– category classification
Text classification: training?

\[
\text{label} = \arg \max_{l \in \text{Labels}} P(\text{word}_1 | l) P(\text{word}_2 | l) \cdots P(\text{word}_n | l) P(l)
\]

\[
\tilde{P}(f_i | l) = \frac{N(f_i, l)}{N(l)}
\]

number of times the word occurred in documents in that class

number of items in text class