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More probability!

CS311 
David Kauchak 

Spring 2013 

Some material borrowed from: 
Sara Owsley Sood and others 

Admin 

•  Assign 3 Tuesday at the beginning of 
class (in class) 

•  Should have looked at written 2 by now 
•  Written 3 out soon 

•  Mancala tournament: good news and bad 
news 

Another example 
Start with the joint probability distribution: 

 
P(toothache) = ? 

Another example 
Start with the joint probability distribution: 

 
P(toothache) = 0.108 + 0.012 + 0.016 + 0.064 = 0.2 
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Another example 
Start with the joint probability distribution: 

 
P(¬cavity | toothache) = ? 

Another example 
Start with the joint probability distribution: 

 
P(¬cavity | toothache)  = P(¬cavity, toothache) 

      P(toothache) 
     =        0.016+0.064 
        0.108 + 0.012 + 0.016 + 0.064 
     = 0.4 

 

Normalization 

Denominator can be viewed as a normalization constant α 
 
P(CAVITY | toothache) = α P(CAVITY,toothache)  

= α [P(CAVITY,toothache,catch) + P(CAVITY,toothache,¬ catch)] 
= α [<0.108,0.016> + <0.012,0.064>]  
= α <0.12,0.08> = <0.6,0.4> 

 
 
 
 
 

 
General idea: compute distribution on query variable by fixing evidence 

variables and summing over hidden/unknown variables 

unnormalized p(cavity|toothache) unnormalized p(¬cavity|toothache) 

More Probability 
In the United States, 55% of children get an 
allowance and 41% of children get an allowance 
and do household chores. What is the probability 
that a child does household chores given that the 
child gets an allowance? 

€ 

p(chores | allow) = p(chores,allow) / p(allow)

€ 

= 0.41/0.55 = 0.745



3 

Still more probability 

•  A math teacher gave her class two tests. 
25% of the class passed both tests and 
42% of the class passed the first test. 
What is the probability that a student who 
passed the first test also passed the 
second test?  

Another Example 

A patient takes a lab test and the result comes back 
positive. The test has a false negative rate of 2% 
and false positive rate of 2%. Furthermore, 0.5% 
of the entire population have this cancer. 
 
What is the probability of cancer if we know the 
test result is positive? 

Another Example 

A patient takes a lab test and the result comes back 
positive. The test has a false negative rate of 2% and 
false positive rate of 2%. Furthermore, 0.5% of the 
entire population have this cancer. 
 
What is the probability of cancer if we know the test 
result is positive? 

p(cancer) = 0.005 
p(false_neg) = 0.02 
p(false_pos)=0.02 
 
p(cancer | pos) = ? 

false negative: negative result even 
though we have cancer 
 
false positive: positive result even 
though we don’t have cancer 

Another Example 
p(cancer) = 0.005 
p(false_neg) = 0.02 
p(false_pos)=0.02 
 
p(cancer | pos) = ? 

false negative: negative result even 
though we have cancer 
 
false positive: positive result even 
though we don’t have cancer 

€ 

p(cancer | pos) =
p(cancer, pos)

p(pos)
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Another Example 
p(cancer) = 0.005 
p(false_neg) = 0.02 
p(false_pos)=0.02 
 
p(cancer | pos) = ? 

false negative: negative result even 
though we have cancer 
 
false positive: positive result even 
though we don’t have cancer 

€ 

p(cancer, pos)
p(pos)

=
p(cancer)(1− p( false_ neg))

p(cancer)(1− p( false_ neg))+ p(¬cancer)p( false_ pos)

two ways to get a positive result: cancer with a correct 
positive and not cancer with a false positive 

1-p(false_neg) gives us the probability of the test 
correctly identifying us with cancer 

Another Example 
p(cancer) = 0.005 
p(false_neg) = 0.02 
p(false_pos)=0.02 
 
p(cancer | pos) = ? 

false negative: negative result even 
though we have cancer 
 
false positive: positive result even 
though we don’t have cancer 

€ 

p(cancer | pos) = 0.1975

Contrast this with p(pos | cancer) = 0.98 

Obtaining probabilities 

We’ve talked a lot about probabilities, but not 
where they come from 

–  intuition/guess 
•  this can be very hard 
•  people are not good at this for anything but the simplest 

problems 
–  estimate from data! 

H H H H H T T T T T 

Estimating probabilities 

H H H H H T T T T T 

Total Flips: 10 
Number Heads: 5 
Number Tails: 5 

Probability of Heads: 
Number Heads / Total Flips = 0.5 
 
Probability of Tails: 
Number Tails / Total Flips = 0.5 = 1.0 – Probability of Heads 

The experiments, the sample space 
and the events must be defined 
clearly for probability to be meaningful 
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Theoretical Probability 

Maximum entropy principle 
–  When one has only partial information about the possible 

outcomes one should choose the probabilities so as to 
maximize the uncertainty about the missing information 

–  Alternatives are always to be judged equally probable if 
we have no reason to expect or prefer one over the other 

 
Maximum likelihood estimation 

–  set the probabilities so that we maximize how likely our 
data is 

 
Turns out these approaches do the same thing! 

Maximum Likelihood Estimation 

Number of times an event occurs in the data 

Total number of times experiment was run 
(total number of data collected) 

Maximum Likelihood Estimation 

Number of times an event occurs in the data 

Total number of times experiment was run 
(total number of data collected) 

Rock/Paper/Scissors 

http://www.nytimes.com/interactive/science/rock-paper-scissors.html 

How is it done? 

Maximum Likelihood Estimation 

Number of times an event occurs in the data 

Total number of times experiment was run 
(total number of data collected) 

Rock/Paper/Scissors 

http://www.nytimes.com/interactive/science/rock-paper-scissors.html 

… 
•  Analyze the prior choices 
•  Select probability of next choice based on data 

How? 
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Maximum Likelihood Estimation 

Number of times an event occurs in the data 

Total number of times experiment was run 
(total number of data collected) 

P(rock) =  

P(rock | scissors) =  

P(rock | scissors, scissors, scissors) =  

Maximum Likelihood Estimation 

Number of times an event occurs in the data 

Total number of times experiment was run 
(total number of data collected) 

P(rock) = 4/10 = 0.4 

P(rock | scissors) = 2/4 = 0.5  

P(rock | scissors, scissors, scissors) = 1/1 = 1.0  

Maximum Likelihood Estimation 

Number of times an event occurs in the data 

Total number of times experiment was run 
(total number of data collected) 

P(rock) = 4/10 = 0.4 

P(rock | scissors) = 2/4 = 0.5  

P(rock | scissors, scissors, scissors) = 1/1 = 1.0  

Which of these do you think is most accurate? 

Law of Large Numbers 

As the number of experiments increases the relative 
frequency of an event more closely approximates the 
actual probability of the event. 

–  if the theoretical assumptions hold 

 
Buffon’s Needle for Computing π 

–  http://mste.illinois.edu/reese/buffon/buffon.html 

x 

t 
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Large Numbers Reveal Problems in Assumptions 

Results of 1,000,000 throws of a die 
Number     1     2     3     4     5     6 
Fraction  .155 .159 .164 .169 .174 .179 
 

Probabilistic Reasoning 
Evidence 

–  What we know about a situation 

Hypothesis 
–  What we want to conclude 

Compute 
–  P( Hypothesis | Evidence ) 

Probabilistic Reasoning 
Evidence 

–  What we know about a situation 

Hypothesis 
–  What we want to conclude 

Compute 
–  P( Hypothesis | Evidence ) 

Credit card application? 
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Credit Card Application 

E is the data about the applicant's age, job, 
education, income, credit history, etc,  

H is the hypothesis that the credit card will 
provide positive return.  

The decision of whether to issue the credit card 
to the applicant is based on the probability P(H|
E). 

Probabilistic Reasoning 
Evidence 

–  What we know about a situation 

Hypothesis 
–  What we want to conclude 

Compute 
–  P( Hypothesis | Evidence ) 

Medical diagnosis? 

Medical Diagnosis 

E is a set of symptoms, such as, coughing, 
sneezing, headache, ... 

H is a disorder, e.g., common cold, SARS, swine 
flu. 

The diagnosis problem is to find an H (disorder) 
such that P(H|E) is maximum. 

Chain rule (aka product rule) 

€ 

p(X |Y ) =  P(X,Y )
P(Y )

€ 

p(X,Y ) =  P(X |Y )P(Y )

We can view calculating the probability of X 
AND Y occurring as two steps: 
 
1. Y occurs with some probability P(Y) 
2. Then, X occurs, given that Y has occurred 
  

or you can just trust the math… J 
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Chain rule (aka product rule) 

€ 

p(X |Y ) =  P(X,Y )
P(Y )

p(X,Y ) =  P(Y | X)P(X)

We can view calculating the probability of X 
AND Y occurring as two steps: 
 
1. X occurs with some probability P(X) 
2. Then, Y occurs, given that X has occurred 
  

or you can just trust the math… J 

Chain rule 

€ 

p(X,Y,Z) =  P(X |Y,Z)P(Y,Z)

€ 

p(X,Y,Z) =  P(X,Y | Z)P(Z)

€ 

p(X,Y,Z) =  P(X |Y,Z)P(Y | Z)P(Z)

€ 

p(X,Y,Z) =  P(Y,Z | X)P(X)

€ 

p(X1,X2,...,Xn ) =  ?

Bayes’ rule (theorem) 

€ 

p(X |Y ) =  P(X,Y )
P(Y )

€ 

p(X,Y ) =  P(X |Y )P(Y )

€ 

p(X |Y ) =  P(X,Y )
P(Y )

€ 

p(X,Y ) =  P(Y | X)P(X)

€ 

p(X |Y ) =  P(Y | X)P(X)
P(Y )

Bayes’ rule 
Allows us to talk about P(Y|X) rather than P(X|Y) 
 
Sometimes this can be more intuitive 
 
Why? 

€ 

p(X |Y ) =  P(Y | X)P(X)
P(Y )
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Bayes’ rule 
p(disease | symptoms) 

–  For everyone who had those symptoms, how many had the 
disease? 

–  p(symptoms|disease) 
•  For everyone that had the disease, how many had this symptom? 

p(good_lendee | credit_features) 
–  For everyone who had these credit features, how many were 

good lendees? 
–  p(credit_features | good_lendee) 

•  For all the good lenders, how many had this feature 

p(cause | effect) vs. p(effect | cause) 
 
p(H | E) vs. p(E | H) 

Bayes’ rule 

We often already have data on good lenders, so p(features 
| good_lendee) is straightforward 
 
p(features) and p(good_lendee) are often easier than 
p(good_lendee|features) 
 
Allows us to properly handle changes in just the underlying 
distribution of good_lendees, etc. 

€ 

p(good _ lendee | features) =  P( features | good _ lendee)P(good _ lendee)
P( features)

Other benefits 
Simple lender model: 

–  score: is credit score > 600 
–  debt: debt < income 

€ 

p(Good |Credit,Debt) =  P(Credit,Dept |Good)P(Good)
P(Credit,Debt)

Other benefits 

€ 

p(Good |Credit,Debt) 

It’s in the 1950s and you train your model 
“diagnostically” using just p(Good | Credit, Debt). 
 
However, in the 1960s and 70s the population of 
people that are good lendees drastically increases 
(baby-boomers learned from their depression era 
parents and are better with their money)  

Intuitively what should happen? 
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Other benefits 

€ 

p(Good |Credit,Debt) 

It’s in the 1950s and you train your model 
“diagnostically” using just p(Good | Credit, Debt). 
 
However, in the 1960s and 70s the population of 
people that are good lendees drastically increases 
(baby-boomers learned from their depression era 
parents and are better with their money)  

Probability of “good” should increase, but that’s hard 
to figure out from just this equation 

Other benefits 

€ 

p(Good |Credit,Debt) =  P(Credit,Dept |Good)P(Good)
P(Credit,Debt)

Modeled using Bayes’ rule, it’s clear how 
much the probability should change.   
 
Measure what the new P(Good) is. 

When it rains… 
Marie is getting married tomorrow at an outdoor ceremony 
in the desert. In recent years, it has rained only 5 days 
each year. Unfortunately, the weatherman has predicted 
rain for tomorrow. When it actually rains, the weatherman 
correctly forecasts rain 90% of the time. When it doesn't 
rain, he incorrectly forecasts rain 5% of the time. What is 
the probability that it will rain on the day of Marie's 
wedding? 

p(rain) = 5/365 
p(predicted|rain) = 0.9 
p(predicted|¬rain) = 0.05 

When it rains… 

€ 

p(rain | predicted) =
p(predicted | rain)p(rain)

p(predicted)

p(rain) = 5/365 
p(predicted|rain) = 0.9 
p(predicted|¬rain) = 0.05 

€ 

=
0.9*5 /365
p(predicted)
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When it rains… 

p(rain) = 5/365 
p(predicted|rain) = 0.9 
p(predicted|¬rain) = 0.05 

€ 

p(predicted) = p(predicted | rain)p(rain) + p(predicted |¬rain)p(¬rain)

€ 

p(¬rain | predicted) = p(predicted |¬rain)p(¬rain)

€ 

= 0.05* 360 /365

Monty Hall 
•  3 doors 

–  behind two, something bad 
–  behind one, something good 

•  You pick one door, but are not shown 
the contents 

•  Host opens one of the other two doors that has the bad 
thing behind it (he always opens one with the bad thing) 

•  You can now switch your door to the other unopened.  
Should you? 

Monty Hall 
p(win) initially? 

– 3 doors, 1 with a winner, p(win) = 1/3 
 
p(win | shown_other_door)? 

– One reasoning: 
•  once you’re shown one door, there are just two 

remaining doors 
•  one of which has the winning prize 
•  1/2 

This is not correct! 

Be careful! – Player picks door 1 

winning 
location 

Door 1 

Door 2 

Door 3 

1/3 

1/3 

1/3 

host 
opens 

Door 2 

Door 3 

1/2 

1/2 

Door 3 1 

Door 2 1 

In these two cases, 
switching will give you 
the correct answer.  
Key: host knows 
where it is. 
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Another view 

… 

1000 doors 
–  behind 999, something bad 
–  behind one, something good 

You pick one door, but are not shown the contents 
 
Host opens 998 of the other 999 doors that have the bad thing behind it 
(he always opens ones with the bad thing) 

In essence, you’re picking between it being behind your one door or 
behind any one of the other doors (whether that be 2 or 999) 


