
1

Local Search!

CS311
David Kauchak

Spring 2013

Some material borrowed from:
Sara Owsley Sood and others

Administrative

n  Assignment 2 due Tuesday before class
n  Written problems 2 posted
n  Class participation
n  http://www.youtube.com/watch?

v=irHFVdphfZQ&list=UUCDOQrpqLqKVcTCKzqa
rxLg

N-Queens problem N-Queens problem

2

N-Queens problem

What is the depth?
n  8

What is the branching factor?
n  ≤ 8

How many nodes?
n  88 = 17 million nodes

Do we care about the path?
What do we really care about?

Local search
So far a systematic exploration:

n  Explore full search space (possibly) using principled pruning
(A*, . . .)

Best such algorithms (IDA*) can handle

n  10100 states ≈ 500 binary-valued variables (ballpark figures only!)

but. . . some real-world problem have 10,000 to 100,000 variables
1030,000 states

We need a completely different approach

Local search

Key difference: we don’t care about the path to the
solution, only the solution itself!

Other similar problems?

n  sudoku
n  crossword puzzles
n  VLSI design
n  job scheduling
n  Airline fleet scheduling

n  http://www.innovativescheduling.com/company/Publications/
Papers.aspx

n  …

Alternate Approach

Start with a random
configuration

repeat

n  generate a set of “local” next
states

n  move to one of these next
states

How is this different?

3

Local search

Start with a random configuration
repeat

n  generate a set of “local” next states
n  move to one of these next states

Requirements:
n  ability to generate an initial, random guess
n  generate the set of next states that are “local”
n  criterion for evaluating what state to pick!

Example: 4 Queens

State:
n  4 queens in 4 columns

Generating random state:
n  any configuration
n  any configuration without row conflicts?

Operations:
n  move queen in column

Goal test:
n  no attacks

Evaluation:
n  h(state) = number of attacks

Local search

Start with a random configuration
repeat

n  generate a set of “local” next states
n  move to one of these next states

Starting state and next states are generally
constrained/specified by the problem

Local search

Start with a random configuration
repeat

n  generate a set of “local” next states
n  move to one of these next states

How should we pick the
next state to go to?

4

Greedy: Hill-climbing search

Start with a random configuration
repeat

n  generate a set of “local” next states
n  move to one of these next states

pick the best one according to our heuristic

again, unlike A* and others, we don’t care
about the path

Hill-Climbing

def hillClimbing(problem):
 """ This function takes a problem specification and returns
 a solution state which it finds via hill climbing """
 currentNode = makeNode(initialState(problem))
 while True:
 nextNode = getHighestSuccessor(currentNode,problem)
 if value(nextNode) <= value(currentNode):
 return currentNode
 currentNode = nextNode

Example: n-queens

3 steps!

Graph coloring

What is the graph coloring problem?

5

Graph coloring

Given a graph, label the nodes of the graph with n
colors such that no two nodes connected by an edge
have the same color

Is this a hard problem?
n  NP-hard (NP-complete problem)

Applications
n  scheduling
n  sudoku

Graph coloring

Given a graph, label the nodes of the graph with n
colors such that no two nodes connected by an edge
have the same color

Is this a hard problem?
n  NP-hard (NP-complete problem)

Applications
n  scheduling
n  sudoku

Local search: graph 3-coloring

Initial state?

Next states?

Heuristic/evaluation measure?

Example: Graph Coloring

1.  Start with random coloring of nodes
2.  Change color of one node to reduce # of conflicts
3.  Repeat 2

Eval: number of “conflicts”, pairs
adjacent nodes with the same color:

2

6

Example: Graph Coloring

1.  Start with random coloring of nodes
2.  Change color of one node to reduce # of conflicts
3.  Repeat 2

1

Eval: number of “conflicts”, pairs
adjacent nodes with the same color:

Example: Graph Coloring

1.  Start with random coloring of nodes
2.  Change color of one node to reduce # of conflicts
3.  Repeat 2

Eval: number of “conflicts”, pairs
adjacent nodes with the same color:

Hill-climbing Search: 8-queens
problem

h = number of pairs of queens that are attacking each other, either directly or
indirectly

h = 17 for the above state

Hill-climbing search: 8-queens
problem

After 5 moves, we’re here… now what?

86% of the time, this happens

7

Problems with hill-climbing Hill-climbing Performance

Complete?

Optimal?

Time Complexity

Space Complexity

Problems with hill-climbing

Ideas?

Idea 1: restart!
Random-restart hill climbing

n  if we find a local minima/maxima start over again at a new random
location

Pros:

Cons:

8

Idea 1: restart!
Random-restart hill climbing

n  if we find a local minima/maxima start over again at a new random
location

Pros:

n  simple
n  no memory increase
n  for n-queens, usually a few restarts gets us there

n  the 3 million queens problem can be solve in < 1 min!

Cons:

n  if space has a lot of local minima, will have to restart a lot
n  loses any information we learned in the first search
n  sometimes we may not know we’re in a local minima/maxima

Idea 2: introduce randomness

def hillClimbing(problem):
 """ This function takes a problem specification and returns
 a solution state which it finds via hill climbing """
 currentNode = makeNode(initialState(problem))
 while True:
 nextNode = getHighestSuccessor(currentNode,problem)
 if value(nextNode) <= value(currentNode):
 return currentNode
 currentNode = nextNode

Rather than always selecting the best, pick a random move with
some probability

•  sometimes pick best, sometimes random (epsilon greedy)
•  make better states more likely, worse states less likely
•  book just gives one… many ways of introducing randomness!

Idea 3: simulated annealing

What the does the term annealing mean?

“When I proposed to my wife I was
annealing down on one knee”?

Idea 3: simulated annealing

What the does the term annealing mean?

9

Simulated annealing
Early on, lots of randomness

n  avoids getting stuck in local minima
n  avoids getting lost on a plateau

As time progresses, allow less and less randomness
n  Specify a “cooling” schedule, which is how much randomness is

included over time

ra
n
d
o
m

n
es

s

time

Idea 4: why just 1 initial state?

Local beam search: keep track of k states
n  Start with k randomly generated states
n  At each iteration, all the successors of all k states are

generated
n  If any one is a goal state

n  stop
n  else

n  select the k best successors from the complete list and repeat

Local beam search

Pros/cons?
n  uses/utilized more memory
n  over time, set of states can become very similar

How is this different than just randomly restarting k times?

What do you think regular beam search is?

An aside…
Traditional beam search

A number of variants:
n  BFS except only keep the top k at each level
n  best-first search (e.g. greedy search or A*) but only keep the

top k in the priority queue

Complete?

Used in many domains
n  e.g. machine translation

n  http://www.isi.edu/licensed-sw/pharaoh/
n  http://www.statmt.org/moses/

10

A few others local search variants

Stochastic beam search
n  Instead of choosing k best from the pool, choose k semi-

randomly

Taboo list: prevent returning quickly to same state
n  keep a fixed length list (queue) of visited states
n  add most recent and drop the oldest
n  never visit a state that’s in the taboo list

Idea 5: genetic algorithms

We have a pool of k states

Rather than pick from these, create
new states by combining states

Maintain a “population” of states

Genetic Algorithms

A class of probabilistic optimization algorithms
n  A genetic algorithm maintains a population of candidate solutions for the

problem at hand, and makes it evolve by iteratively applying a set of
stochastic operators

Inspired by the biological evolution process

Uses concepts of “Natural Selection” and “Genetic Inheritance” (Darwin
1859)

Originally developed by John Holland (1975)

The Algorithm

Randomly generate an initial population.

Repeat the following:

1.  Select parents and “reproduce” the next generation
2.  Randomly mutate some
3.  Evaluate the fitness of the new generation
4.  Discard old generation and keep some of the best

from the new generation

11

1 0 1 0 1 1 1

1 1 0 0 0 1 1

Parent 1

Parent 2

1 0 1 0 0 1 1

1 1 0 0 1 1 0

Child 1

Child 2 Mutation

Genetic Algorithm Operators
Mutation and Crossover Genetic algorithms

Genetic algorithms

12

Local Search Summary
Surprisingly efficient search technique

Wide range of applications

Formal properties elusive

Intuitive explanation:
n  Search spaces are too large for systematic search anyway. . .

Area will most likely continue to thrive

Local Search Example: SAT
Many real-world problems can be translated into propositional
logic:

 (A v B v C) ^ (¬B v C v D) ^ (A v ¬C v D)

. . . solved by finding truth assignment to variables (A, B, C, . . .)
that satisfies the formula

Applications

n  planning and scheduling
n  circuit diagnosis and synthesis
n  deductive reasoning
n  software testing
n  . . .

Satisfiability Testing
Best-known systematic method:

n  Davis-Putnam Procedure (1960)
n  Backtracking depth-first search (DFS) through space of truth

assignments (with unit-propagation)

Greedy Local Search (Hill Climbing)

13

Greedy Local Search (Hill Climbing): GSAT

GSAT:
1. Guess random truth assignment
2. Flip value assigned to the variable that yields the greatest # of

satisfied clauses. (Note: Flip even if no improvement)
3. Repeat until all clauses satisfied, or have performed “enough”

flips
4. If no sat-assign found, repeat entire process, starting from a

different initial random assignment.

GSAT vs. DP on Hard Random Instances

Experimental Results: Hard Random 3SAT

n  Effectiveness: prob. that random initial assignment
leads to a solution.

n  Complete methods, such as DP, up to 400 variables
n  Mixed Walk better than Simulated Annealing
n  better than Basic GSAT
n  better than Davis-Putnam

Local search for mancala?

14

Clustering

Group together similar items. Find clusters.

For example…

Hierarchical Clustering

Recursive partitioning/merging of a data set

1	

2	

3	

4	

5	

 1 2 3 4 5	

1-clustering	

2-clustering	

3-clustering	

4-clustering	

5-clustering	

•  Represents all partitionings of
the data

•  We can get a K clustering by
looking at the connected
components at any given level

•  Frequently binary dendograms,
but n-ary dendograms are
generally easy to obtain with
minor changes to the
algorithms

Dendogram

15

Hierarchical clustering as local search
n  State?

n  a hierarchical clustering of the data
n  basically, a tree over the data
n  huge state space!

n  “adjacent states”?
n  swap two sub-trees
n  can also “graft” a sub-tree on somewhere else

Swap without temporal constraints,
example 1

 A B C D E

swap B and D

 A D C B E

no change to the structure

Swap without temporal constraints,
example 2

 A B C D E

swap (D,E) and C

 A B D E C

structure changed!

Hierarchical clustering as local search
n  state criterion?

16

Hierarchical clustering as local search
n  state criterion?

n  how close together are the k-clusterings defined
by the hierarchical clustering

∑∑
= ∈

−=
k

j Sx
jk

j

SxC
1

2
)()cost(µ

∑
=

=
n

i
kk Cw

1

)cost(hcost
weighted mean
of k-clusterings

sum of squared
distances from
cluster centers

SS-Hierarchical vs. Ward’s

SS-Hierarchical
Greedy,
Ward’s initialize

Ward’s

20 points 21.59
8 iterations

21.99

100 points 411.83
233 iterations

444.15

500 points 5276.30
? iterations

5570.95

Yeast gene expression data set

