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Local Search!

CS311 
David Kauchak 

Spring 2013 

Some material borrowed from: 
Sara Owsley Sood and others 

Administrative 

n  Assignment 2 due Tuesday before class 
n  Written problems 2 posted 
n  Class participation 
n  http://www.youtube.com/watch?

v=irHFVdphfZQ&list=UUCDOQrpqLqKVcTCKzqa
rxLg 

N-Queens problem N-Queens problem 
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N-Queens problem 

What is the depth? 
n  8 

What is the branching factor? 
n  ≤ 8 

How many nodes? 
n  88 = 17 million nodes 

 
Do we care about the path? 
What do we really care about? 

Local search 
So far a  systematic exploration:  

n  Explore full search space (possibly) using principled pruning 
(A*, . . . )  

 
Best such algorithms (IDA*) can handle  

n  10100 states ≈ 500 binary-valued variables  (ballpark figures only!)  
 
but. . . some real-world problem have 10,000 to 100,000 variables 
1030,000 states  
 
We need a completely different approach 

Local search 

Key difference: we don’t care about the path to the 
solution, only the solution itself! 
 
Other similar problems? 

n  sudoku 
n  crossword puzzles 
n  VLSI design 
n  job scheduling 
n  Airline fleet scheduling 

n  http://www.innovativescheduling.com/company/Publications/
Papers.aspx 

n  … 

Alternate Approach 

Start with a random 
configuration 
 
repeat 

n  generate a set of “local” next 
states 

n  move to one of these next 
states 

How is this different? 
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Local search 

Start with a random configuration 
repeat 

n  generate a set of “local” next states 
n  move to one of these next states 

Requirements: 
n  ability to generate an initial, random guess 
n  generate the set of next states that are “local” 
n  criterion for evaluating what state to pick! 

Example: 4 Queens 

State: 
n  4 queens in 4 columns 

Generating random state: 
n  any configuration 
n  any configuration without row conflicts? 

Operations:  
n  move queen in column  

Goal test:  
n  no attacks  

Evaluation: 
n  h(state) = number of attacks  

Local search 

Start with a random configuration 
repeat 

n  generate a set of “local” next states 
n  move to one of these next states 

Starting state and next states are generally 
constrained/specified by the problem 

Local search 

Start with a random configuration 
repeat 

n  generate a set of “local” next states 
n  move to one of these next states 

How should we pick the 
next state to go to? 
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Greedy: Hill-climbing search 

Start with a random configuration 
repeat 

n  generate a set of “local” next states 
n  move to one of these next states 

pick the best one according to our heuristic 

again, unlike A* and others, we don’t care 
about the path 

Hill-Climbing 

def hillClimbing(problem): 
   """ This function takes a problem specification and returns 
       a solution state which it finds via hill climbing """ 
   currentNode = makeNode(initialState(problem)) 
   while True: 
      nextNode = getHighestSuccessor(currentNode,problem) 
      if value(nextNode) <= value(currentNode): 
         return currentNode 
      currentNode = nextNode 

Example: n-queens 

3 steps! 

Graph coloring 

What is the graph coloring problem? 
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Graph coloring 

Given a graph, label the nodes of the graph with n 
colors such that no two nodes connected by an edge 
have the same color 

Is this a hard problem? 
n  NP-hard (NP-complete problem) 

Applications 
n  scheduling 
n  sudoku 

Graph coloring 

Given a graph, label the nodes of the graph with n 
colors such that no two nodes connected by an edge 
have the same color 

Is this a hard problem? 
n  NP-hard (NP-complete problem) 

Applications 
n  scheduling 
n  sudoku 

Local search: graph 3-coloring 

Initial state? 

Next states? 

Heuristic/evaluation measure? 

Example: Graph Coloring 

1.  Start with random coloring of nodes  
2.  Change color of one node to reduce # of conflicts  
3.  Repeat 2  

Eval: number of “conflicts”, pairs 
adjacent nodes with the same color: 

2 
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Example: Graph Coloring 

1.  Start with random coloring of nodes  
2.  Change color of one node to reduce # of conflicts  
3.  Repeat 2  

1 

Eval: number of “conflicts”, pairs 
adjacent nodes with the same color: 

Example: Graph Coloring 

1.  Start with random coloring of nodes  
2.  Change color of one node to reduce # of conflicts  
3.  Repeat 2  

Eval: number of “conflicts”, pairs 
adjacent nodes with the same color: 

Hill-climbing Search: 8-queens 
problem 

h = number of pairs of queens that are attacking each other, either directly or 
indirectly  
 
h = 17 for the above state 
 

Hill-climbing search: 8-queens 
problem 

After 5 moves, we’re here… now what? 

86% of the time, this happens 
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Problems with hill-climbing Hill-climbing Performance 

Complete? 
 
Optimal? 
 
Time Complexity 
 
Space Complexity 

Problems with hill-climbing 

Ideas? 

Idea 1: restart! 
Random-restart hill climbing 

n  if we find a local minima/maxima start over again at a new random 
location 

 
Pros: 
 
Cons: 



8 

Idea 1: restart! 
Random-restart hill climbing 

n  if we find a local minima/maxima start over again at a new random 
location 

 
Pros: 

n  simple 
n  no memory increase 
n  for n-queens, usually a few restarts gets us there 

n  the 3 million queens problem can be solve in < 1 min! 

 
Cons: 

n  if space has a lot of local minima, will have to restart a lot 
n  loses any information we learned in the first search 
n  sometimes we may not know we’re in a local minima/maxima 

Idea 2: introduce randomness 

def hillClimbing(problem): 
   """ This function takes a problem specification and returns 
       a solution state which it finds via hill climbing """ 
   currentNode = makeNode(initialState(problem)) 
   while True: 
      nextNode = getHighestSuccessor(currentNode,problem) 
      if value(nextNode) <= value(currentNode): 
         return currentNode 
      currentNode = nextNode 

Rather than always selecting the best, pick a random move with 
some probability 
 

•  sometimes pick best, sometimes random (epsilon greedy) 
•  make better states more likely, worse states less likely 
•  book just gives one… many ways of introducing randomness! 

Idea 3: simulated annealing 

What the does the term annealing mean? 

“When I proposed to my wife I was 
annealing down on one knee”? 

Idea 3: simulated annealing 

What the does the term annealing mean? 
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Simulated annealing 
Early on, lots of randomness 

n  avoids getting stuck in local minima 
n  avoids getting lost on a plateau 

 
As time progresses, allow less and less randomness 
n  Specify a “cooling” schedule, which is how much randomness is 

included over time 

ra
n
d
o
m

n
es

s 

time 

Idea 4: why just 1 initial state? 

Local beam search: keep track of k states 
n  Start with k randomly generated states 
n  At each iteration, all the successors of all k states are 

generated 
n  If any one is a goal state 

n  stop  
n  else  

n  select the k best successors from the complete list and repeat 

Local beam search 

Pros/cons? 
n  uses/utilized more memory 
n  over time, set of states can become very similar 

How is this different than just randomly restarting k times? 

What do you think regular beam search is? 
 

An aside… 
Traditional beam search 

A number of variants: 
n  BFS except only keep the top k at each level 
n  best-first search (e.g. greedy search or A*) but only keep the 

top k in the priority queue 

Complete? 

Used in many domains 
n  e.g. machine translation 

n  http://www.isi.edu/licensed-sw/pharaoh/ 
n  http://www.statmt.org/moses/ 
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A few others local search variants 

Stochastic beam search 
n  Instead of choosing k best from the pool, choose k semi-

randomly 

Taboo list: prevent returning quickly to same state 
n  keep a fixed length list (queue) of visited states 
n  add most recent and drop the oldest 
n  never visit a state that’s in the taboo list 

Idea 5: genetic algorithms 

We have a pool of k states 
 
Rather than pick from these, create 
new states by combining states 
 
Maintain a “population” of states 

Genetic Algorithms 

A class of probabilistic optimization algorithms 
n  A genetic algorithm maintains a population of candidate solutions for the 

problem at hand, and makes it evolve by iteratively applying a set of 
stochastic operators 

 
Inspired by the biological evolution process 
 
Uses concepts of “Natural Selection” and “Genetic Inheritance” (Darwin 
1859) 
 
Originally developed by John Holland (1975) 

The Algorithm 

Randomly generate an initial population. 
 
Repeat the following: 

1.  Select parents and “reproduce” the next generation 
2.  Randomly mutate some 
3.  Evaluate the fitness of the new generation 
4.  Discard old generation and keep some of the best 

from the new generation 
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1  0  1  0  1  1  1 

1  1  0  0  0  1  1 

Parent 1 

Parent 2 

1  0  1  0  0  1  1 

1  1  0  0  1  1  0 

Child 1 

Child 2 Mutation 

Genetic Algorithm Operators 
Mutation and Crossover Genetic algorithms 

Genetic algorithms 
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Local Search Summary 
Surprisingly efficient search technique  
 
Wide range of applications 
 
Formal properties elusive  

Intuitive explanation:  
n  Search spaces are too large for systematic search anyway. . .  

 
Area will most likely continue to thrive 

Local Search Example: SAT 
Many real-world problems can be translated into propositional 
logic:   

 (A v B v C) ^ (¬B v C v D) ^ (A v ¬C v D)  
  

. . . solved by finding truth assignment to variables (A, B, C, . . . ) 
that satisfies the formula  

 
Applications  

n  planning and scheduling  
n  circuit diagnosis and synthesis  
n  deductive reasoning  
n  software testing  
n  . . .  

Satisfiability Testing 
Best-known systematic method:  

n  Davis-Putnam Procedure (1960)  
n  Backtracking depth-first search (DFS) through space of truth 

assignments (with unit-propagation)  

Greedy Local Search (Hill Climbing) 
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Greedy Local Search (Hill Climbing): GSAT 

GSAT:  
1. Guess random truth assignment  
2. Flip value assigned to the variable that yields the greatest # of 

satisfied clauses. (Note: Flip even if no improvement)  
3. Repeat until all clauses satisfied, or have performed “enough” 

flips   
4. If no sat-assign found, repeat entire process, starting from a 

different initial random assignment. 

GSAT vs. DP on Hard Random Instances 

Experimental Results: Hard Random 3SAT 

n  Effectiveness: prob. that random initial assignment 
leads to a solution.  

n  Complete methods, such as DP, up to 400 variables  
n  Mixed Walk better than Simulated Annealing  
n  better than Basic GSAT  
n  better than Davis-Putnam  

Local search for mancala? 
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Clustering 

Group together similar items.  Find clusters. 

For example… 

Hierarchical Clustering 

Recursive partitioning/merging of a data set 

1	


2	


3	


4	


5	


    1           2       3      4            5	


1-clustering	


2-clustering	


3-clustering	


4-clustering	


5-clustering	


•  Represents all partitionings of 
the data 

•  We can get a K clustering by 
looking at the connected 
components at any given level 

•  Frequently binary dendograms, 
but n-ary dendograms are 
generally easy to obtain with 
minor changes to the 
algorithms 

Dendogram 
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Hierarchical clustering as local search 
n  State? 

n  a hierarchical clustering of the data 
n  basically, a tree over the data 
n  huge state space! 

n  “adjacent states”? 
n  swap two sub-trees 
n  can also “graft” a sub-tree on somewhere else 

Swap without temporal constraints, 
example 1 

    A          B      C     D           E 

swap B and D 

    A          D      C     B           E 

no change to the structure 

Swap without temporal constraints, 
example 2 

    A          B      C     D           E 

swap (D,E) and C 

    A          B  D           E    C 

structure changed! 

Hierarchical clustering as local search 
n  state criterion? 
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Hierarchical clustering as local search 
n  state criterion? 

n  how close together are the k-clusterings defined 
by the hierarchical clustering 
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sum of squared 
distances from 
cluster centers 

SS-Hierarchical vs. Ward’s 

SS-Hierarchical 
Greedy,  
Ward’s initialize 

Ward’s 

20 points 21.59 
8 iterations 

21.99 

100 points 411.83 
233 iterations 

444.15 

500 points 5276.30 
? iterations 

5570.95 

Yeast gene expression data set 


