Local Search	
C	S311
David Kau	chak
Spring	2013
Some material borror	ved from :
Sara Owsley Sood a	nd others

Administrative

- Assignment 2 due Tuesday before class
- Written problems 2 posted
- Class participation

<u>http://www.youtube.com/watch?</u>
 <u>v=irHFVdphfZQ&list=UUCDOQrpqLqKVcTCKzqa</u>
 <u>rxLg</u>

Local search

So far a systematic exploration:

 Explore full search space (possibly) using principled pruning (A*,...)

 Best such algorithms (IDA*) can handle

 10¹⁰⁰ states ≈ 500 binary-valued variables (ballpark figures only!)

 but... some real-world problem have 10,000 to 100,000 variables 10^{30,000} states

We need a completely different approach

Local search

Key difference: we don't care about the path to the solution, only the solution itself!

Other similar problems?

- sudoku
- crossword puzzles
- VLSI design
- job scheduling
- Airline fleet scheduling
 - http://www.innovativescheduling.com/company/Publications/ Papers.aspx
- ...
- ...

Local search

Start with a random configuration repeat

generate a set of "local" next states

move to one of these next states

Requirements:

- ability to generate an initial, random guess
- generate the set of next states that are "local"
- criterion for evaluating what state to pick!

Example: 4 Queens

State:

- 4 queens in 4 columns
- Generating random state:
- any configuration
- any configuration without row conflicts?
- Operations:
- move queen in column

Goal test:

no attacks

- Evaluation:
- h(state) = number of attacks

Local search

Start with a random configuration

repeat

- generate a set of "local" next statesmove to one of these next states
- move to one of these next states

Starting state and next states are generally constrained/specified by the problem

Local search

Start with a random configuration

- repeat
 - generate a set of "local" next states
 - move to one of these next states

How should we pick the next state to go to?

Greedy: Hill-climbing search

Start with a random configuration repeat

- generate a set of "local" next states
- move to one of these next states

pick the best one according to our heuristic

again, unlike A* and others, we don't care about the path

Graph coloring

What is the graph coloring problem?

Graph coloring

Given a graph, label the nodes of the graph with *n* colors such that no two nodes connected by an edge have the same color

Is this a hard problem?

NP-hard (NP-complete problem)

Applications

- scheduling
- sudoku

Complete?

Optimal?

Time Complexity

Space Complexity

Idea 1: restart!

Random-restart hill climbing

• if we find a local minima/maxima start over again at a new random location

Pros:

- simple
- no memory increase
- for n-queens, usually a few restarts gets us there
 the 3 million queens problem can be solve in < 1 min!

Cons:

- if space has a lot of local minima, will have to restart a lot
- loses any information we learned in the first search
- · sometimes we may not know we're in a local minima/maxima

Idea 2: introduce randomness

def hillClimbing (problem) :

" This function takes a problem specification and returns a solution state which it finds via hill climbing " currentNode = makeNode(initialState(problem)) while True:

nextNode (getHighestSuccessor(currentNode,problem) if value (nextNode n currentNode

currentNode = nextNode

Rather than always selecting the best, pick a random move with some probability

- sometimes pick best, sometimes random (epsilon greedy)
 make better states more likely, worse states less likely
 book just gives one... many ways of introducing randomness!

Idea 3: simulated annealing

What the does the term annealing mean?

"When I proposed to my wife I was annealing down on one knee"?

Idea 3: simulated annealing

What the does the term annealing mean?

Annealing, in metallurgy and materials science, is a heat treatment wherein a material is altered, causing changes in its properties such as strength and hardness. It is a process that produces conditions by heating to above the recrystallization temperature and maintaining a suitable temperature, and then cooling. Annealing is used to induce ductility, soften material, relieve internal stresses, refine the structure by making it homogeneous, and improve cold working properties.

Local beam search

Pros/cons?

- uses/utilized more memory
- over time, set of states can become very similar

How is this different than just randomly restarting *k* times?

What do you think regular beam search is?

An aside... Traditional beam search

A number of variants:

- BFS except only keep the top k at each level
- best-first search (e.g. greedy search or A*) but only keep the top k in the priority queue

Complete?

Used in many domains

- e.g. machine translation
 - <u>http://www.isi.edu/licensed-sw/pharaoh/</u>
 - http://www.statmt.org/moses/

A few others local search variants

Stochastic beam search

 Instead of choosing k best from the pool, choose k semirandomly

Taboo list: prevent returning quickly to same state

- keep a fixed length list (queue) of visited states
- add most recent and drop the oldest
- never visit a state that's in the taboo list

Idea 5: genetic algorithms

We have a pool of k states

Rather than pick from these, **create** new states by combining states

Maintain a "population" of states

Genetic Algorithms

- A class of probabilistic optimization algorithms
 - A genetic algorithm maintains a population of candidate solutions for the problem at hand, and makes it evolve by iteratively applying a set of stochastic operators

Inspired by the biological evolution process

Uses concepts of "Natural Selection" and "Genetic Inheritance" (Darwin 1859)

Originally developed by John Holland (1975)

The Algorithm

Randomly generate an initial population.

Repeat the following:

- 1. Select parents and "reproduce" the next generation
- 2. Randomly mutate some
- 3. Evaluate the fitness of the new generation
- 4. Discard old generation and keep *some* of the best from the new generation

Local Search Summary

Surprisingly efficient search technique

Wide range of applications

Formal properties elusive

Intuitive explanation: • Search spaces are too large for systematic search anyway. . .

Area will most likely continue to thrive

Local Search Example: SAT

Many real-world problems can be translated into propositional logic:

- (A v B v C) ^ (¬B v C v D) ^ (A v ¬C v D)
- \ldots solved by finding truth assignment to variables (A, B, C, \ldots) that satisfies the formula

Applications

- planning and scheduling
 circuit diagnosis and synthesis
- deductive reasoning
- software testing
- ...

$$(A \lor C) \land (\neg A \lor C) \land (B \lor \neg C) \land (A \lor \neg B)$$

$$F \land T$$

$$C \land (B \lor \neg C) \land \neg B \qquad C \land (B \lor \neg C)$$

$$F \land B \land T$$

$$C \land (C \lor \neg C) \land \neg B \qquad C \land (B \lor \neg C)$$

GSAT vs. DP on Hard Random Instances

form.		GSAT		Da	ivis-Putr	nam
vars	m.flips	retries	time	choices	depth	time
50	250	6	0.5 <i>sec</i>	77	11	1 sec
70	350	11	1 <i>sec</i>	42	15	15 sec
100	500	42	6 <i>sec</i>	10 ³	19	3 min
120	600	82	14 <i>sec</i>	10 ⁵	22	18 min
140	700	53	14 <i>sec</i>	10 ⁶	27	5 hrs
150	1500	100	45 <i>sec</i>	—		
200	2000	248	3 min	—	—	—
300	6000	232	12 <i>min</i>	—		
500	10000	996	2 hrs	10 ³⁰	> 100	10 ¹⁹ yrs
Note	es: Defii Only	ne "Hard ''satisfia	" later able" forn	nulae		

		GSAT			Simul	. Ann.	
		bas	ic	wa	k .		
	vars	time	eff.	time	eff.	time	eff.
	100	.4	.12	.2	1.0	.6	.88
	200	22	.01	4	.97	21	.86
	400	122	.02	7	.95	75	.93
	600	1471	.01	35	1.0	427	.3
	800	*	*	286	.95	*	*
	1000	*	*	1095	.85	*	*
	2000	*	*	3255	.95	*	*
ectiv	1000 2000 /eness	* s: prot	* b. tha	1095 3255	.85 .95 om i	* nitial a	* assigi

Hierarchical clustering as local search

State?

- a hierarchical clustering of the data
- basically, a tree over the data
- huge state space!
- "adjacent states"?
 - swap two sub-trees
 - can also "graft" a sub-tree on somewhere else

Swap without temporal constraints, example 1

Hierarchical clustering as local search

state criterion?

SS-Hierarchical vs. Ward's

Yeast gene expression data set

	SS-Hierarchical	Ward's
	Greedy, Ward's initialize	
20 points	21.59	21.99
	8 iterations	
100 points	411.83	444.15
	233 iterations	
500 points	5276.30	5570.95
	? iterations	