More Adversarial Search

CS311
David Kauchak
Spring 2013

Some material borrowed from:
Sara Owsley Sood and others

Admin

- Written 2 posted today
- Assignment 2
  - Last chance for a partner
  - How's it going?
  - If working with a partner, should both be there when working on it!

Last time

Game playing as search
Last time

Game playing as search

Assume the opponent will play optimally
- MAX is trying to maximize utility
- MIN is trying to minimize utility

MINIMAX algorithm backs-up the value from the leaves by alternatively minimizing and maximizing action options
- plays “optimally”, that is can play no better than

Won’t work for deep trees or trees with large branching factors

Pruning alleviates this by excluding paths

Alpha-Beta pruning retains the optimality, by pruning paths that will never be chosen
- alpha is the best choice down this path for MAX
- beta is the best choice down this path for MIN

Pruning: do we have to traverse the whole tree?

Minimax example 2
Baby NIM2: take 1, 2 or 3 sticks

```
def maxValue(state, alpha, beta):
    if state is terminal:
        return utility(state)
    else:
        value = -∞
        for all actions a in actions(state):
            value = max(value, minValue(result(state, a), alpha, beta))
            if value >= beta:
                return value  # prune!
            alpha = max(alpha, value)  # update alpha
        return value
```

We're making a decision for MAX.
• When considering MIN's choices, if we find a value that is greater than beta, stop, because MIN won't make this choice
• If we find a better path than alpha, update alpha

```
def minValue(state, alpha, beta):
    if state is terminal:
        return utility(state)
    else:
        value = +∞
        for all actions a in actions(state):
            value = min(value, maxValue(result(state, a), alpha, beta))
            if value <= alpha:
                return value  # prune!
            beta = min(beta, value)  # update beta
        return value
```

We're making a decision for MIN.
• When considering MAX's choices, if we find a value that is less than alpha, stop, because MAX won't make this choice
• If we find a better path than beta for MIN, update beta

Effectiveness of alpha-beta pruning
As we gain more information about the state of things, we're more likely to prune

What affects the performance of pruning?
- Key: which order we visit the states
- Can try and order them so as to improve pruning
Effectiveness of pruning

If perfect state ordering:
- $O(b^m)$ becomes $O(b^{m/2})$
- We can solve a tree twice as deep!

Random order:
- $O(b^m)$ becomes $O(b^{3m/4})$
- still pretty good

For chess using a basic ordering
- Within a factor of 2 of $O(b^{m/2})$

Evaluation functions

$O(b^{m/2})$ is still exponential (and that’s assuming optimal pruning)
- for chess, this gets us ~10-14 ply deep (a bit more with some more heuristics)
- 200 million moves per second (on a reasonable machine)
- 35*50 million, or < 1 second
- not enough to solve most games!

Ideas?
- heuristic function – evaluate the desirability of the position
- This is not a new idea:
  - Claude Shannon (think—information theory, entropy), “Programming a Computer for Playing Chess” (1950)

Cutoff search

How does an evaluation function help us?
- search until some stopping criterion is met
- return our heuristic evaluation of the state at that point
- This serves as a proxy for the actual scoring function

When should we stop?
- as deep as possible, for the time constraints
- generally speaking, the further we are down the tree, the more accurate our evaluation function will be
- based on a fixed depth
- keep track of our depth during recursion
- if we reach our depth limit, return EVAL(state)
Heuristic EVAL

What is the goal of EVAL, our state evaluation function?
- estimate the expected utility of the game at a given state

What are some requirements?
- must be efficient (we're going to be asking this about a lot of states)
- EVAL should play nice with terminal nodes
  - it should order terminal nodes in the same order at UTILITY
  - a win should be the most desirable thing
  - a loss should be the least desirable thing

Heuristic EVAL

What are some desirable properties?
- value should be higher the closer we are to a win
- and lower the closer we are to a lose

The quality of the evaluation function impacts the quality of the player
- Remember last time (De Groot), we expert players were good at evaluating board states!

Simple Mancala Heuristic: Goodness of board = # stones in my Mancala minus the number of stones in my opponents.

Example Tic Tac Toe EVAL

Tic Tac Toe
Assume MAX is using "X"

\[
\begin{align*}
\text{EVAL(state)} &= \begin{cases} 
\infty & \text{if state is win for MAX} \\
-\infty & \text{if state is win for MIN} \\
& \text{else: (number of rows, columns and diagonals available to MAX) - (number of rows, columns and diagonals available to MIN)}
\end{cases}
\end{align*}
\]

\[
\begin{array}{c}
\text{O} \\
\text{X} \\
\text{X} \\
\end{array}
\quad \begin{array}{c}
\text{X} \\
\text{O} \\
\end{array}
\quad = 6 - 4 = 2
\]

\[
\begin{array}{c}
\text{O} \\
\text{X} \\
\end{array}
\quad \begin{array}{c}
\text{X} \\
\text{O} \\
\end{array}
\quad = 4 - 3 = 1
\]

Tic Tac Toe evaluation functions

Ideas?
Chess evaluation functions

Assume each piece has the following values:
- pawn = 1;
- knight = 3;
- bishop = 3;
- rook = 5;
- queen = 9;

$\text{EVAL}(\text{state}) = \text{sum of the value of white pieces} - \text{sum of the value of black pieces}$

Any problems with this?

Chess EVAL

Assume each piece has the following values:
- pawn = 1;
- knight = 3;
- bishop = 3;
- rook = 5;
- queen = 9;

$\text{EVAL}(\text{state}) = \text{sum of the value of white pieces} - \text{sum of the value of black pieces}$

$= 31 - 36 = -5$

Chess EVAL

Ignores actual positions!

Actual heuristic functions are often a weighted combination of features:

$\text{EVAL}(s) = w_1 f_1(s) + w_2 f_2(s) + w_3 f_3(s) + \ldots$
Chess EVAL

$$EVAL(s) = w_1 f_1(s) + w_2 f_2(s) + w_3 f_3(s) + \ldots$$

- number of pawns
- number of attacked knights
- 1 if king has knighted, 0 otherwise

A feature can be any numerical information about the board
- as general as the number of pawns
- to specific board configurations

Deep Blue: 8000 features!

How can we determine the weights (especially if we have 8000 of them!)?

Machine learning!
- play/examine lots of games
- adjust the weights so that the EVAL(s) correlates with the actual utility of the states

Horizon effect

Who's ahead? What move should Black make?
Horizon effect

The White pawn is about to become a queen

A naïve EVAL function may not account for this behavior

We can delay this from happening for a long time by putting the king in check

If we do this long enough, it will go beyond our search cutoff and it will appear to be a better move than any move allowing the pawn to become a queen

But it’s only delaying the inevitable (the book also has another good example)

Other improvements

Computers have lots of memory these days

DFS (or IDS) is only using a linear amount of memory

How can we utilize this extra memory?

- transposition table
- history/end-game tables
- “opening” moves
- ...

Transposition table

Similar to keeping track of the list of explored states

- “transpositions” are differing move sequences that start and end in the same place

Keeps us from duplicating work

Can double the search depth in chess!

history/end-game tables

History

- keep track of the quality of moves from previous games
- use these instead of search

end-game tables

- do a reverse search of certain game configurations, for example all board configurations with king, rook and king
- tells you what to do in any configuration meeting this criterion
- if you ever see one of these during search, you lookup exactly what to do
end-game tables

Devastatingly good

Allows much deeper branching
  - for example, if the end-game table encodes a 20-move finish and we can search up to 14
  - can search up to depth 34

Stiller (1996) explored all end-games with 5 pieces
  - one case check-mate required 262 moves!

Knoval (2006) explored all end-games with 6 pieces
  - one case check-mate required 517 moves!

Traditional rules of chess require a capture or pawn move within 50 or it’s a stalemate

Opening moves

At the very beginning, we’re the farthest possible from any goal state

People are good with opening moves

Tons of books, etc. on opening moves

Most chess programs use a database of opening moves rather than search

Chance/non-determinism in games

All the approaches we’ve looked at are only appropriate for deterministic games

Some games have a randomness component, often imparted either via dice or shuffling

Why consider games of chance?
  - because they’re there!
  - more realistic… life is not deterministic
  - more complicated, allowing us to further examine search techniques

Backgammon

Basic idea: move your pieces around the board and then off

Amount you get to move is determined by a roll of two dice
Backgammon

If we know the dice rolls, then it's straightforward to get the next states.

For example, white rolls a 5 and a 6.

Possible moves?

6     5     4     3     2     1
13    14    15   16    17    18
19    20    21   22    23    24
12    11    10    9     8     7

Which is better: (7-2,7-1) or (17-12,17-11)?

We'd like to search… Ideas?

Searching with chance

We know there are 36 different dice rolls (21 unique).

Insert a “chance” layer in each ply with branching factor 21.

What does this do to the branching factor?

- drastically increases the branching factor (by a factor of 21!)

Possible moves (7-2,7-1), (17-12,17-11), …
Searching with chance

Are all dice combinations equally likely?

Associate a probability with each chance branch
- each double ([1,1], [2,2], ...) have probability 1/36
- all others have probability 1/18
Generally the probabilities are easy to calculate

Assume we can reach the bottom. How can we calculate the value of a state?

Expected minimax value

Rather than the actual value calculate the expected value based on the probabilities

\[
\text{EXPECTI-MINIMAX-VALUE}(n) = \begin{cases} 
\text{UTILITY}(n) & \text{if } n \text{ is a terminal} \\
\max_{s \in \text{successors}(n)} \text{MINIMAX-VALUE}(s) & \text{if } n \text{ is a max node} \\
\min_{s \in \text{successors}(n)} \text{MINIMAX-VALUE}(s) & \text{if } n \text{ is a min node} \\
\sum_{s \in \text{successors}(n)} P(s) \cdot \text{EXPECTI-MINIMAX}(s) & \text{if } n \text{ is a chance node} 
\end{cases}
\]

multiply the minimax value by the probability of going to that state
EXPECTEDMINIMAX example

```
MIN
  2
  3
  1
  4

MAX
  CHANCE
  9
  1

CHANCE
  .9
  .1
```

VALUES?

```
MIN
  2
  3
  1
  4

MAX
  CHANCE
  9
  1

CHANCE
  .9
  .1
```

VALUES!

```
MIN
  2
  3
  1
  4

MAX
  CHANCE
  9
  1

CHANCE
  .9
  .1
```

VALUE!

```
MIN
  2
  3
  1
  4

MAX
  CHANCE
  9
  1

CHANCE
  .9
  .1
```
Chance and evaluation functions

Does this change any requirements on the evaluation function?

Which move will be picked for these different MINIMAX trees?

Magnitude matters, not just ordering

Games with chance

Original branching factor $b$, chance factor $n$

What happens to our search run-time?

- $O(nb^m)$
- In essence, multiplies our branching factor by $n$

For this reason, many games with chance don’t use much search

- Backgammon frequently only looks ahead 3 ply

Instead, evaluation functions play a more important role

- TD-Gammon learned an evaluation function by playing itself over a million times!

Partially observable games

In many games we don’t have all the information about the world, for example!
Partially observable games

In many games we don't have all the information about the world

- battleship
- bridge
- poker
- scrabble
- Kriegspiel
  - pretty cool game
  - “hidden” chess
  - …

How can we deal with this?

Simple Kriegspeil

To start with:

- I know where my pieces are
- and I know exactly where the opponents pieces are

Simple Kriegspeil

As the game progresses, though

- I know where my pieces are
- but I no longer know where the opponents pieces are

Simple Kriegspeil

However, I can have some expectation/estimation of where the are

starts to look like a game of chance
Challenges with partially observable games?

- State space can be huge!
- Our MINIMAX assumption is probably not true
  - Reasons for the opponent to purposefully play suboptimally
- May make moves just to explore
- These are hard!
  - When humans play Kriegspiel, most of the checkmates are accidental 😊

Other things to watch out for...

- What will minimax do here?
- Is that OK?
- What might you do instead?

State of the art

- 5.7 of the book gives a pretty good recap of popular games
- Still lots of research going on!
- AAAI has an annual poker competition
- Lots of other tournaments going on for a variety of games
- New games being invented/examined all the time
  - Google "quantum chess"
- University of Alberta has a big games group