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http://xkcd.com/761/ 

More Adversarial Search 

CS311 
David Kauchak 

Spring 2013 

Some material borrowed from : 
Sara Owsley Sood and others 

Admin   
}  Written 2 posted today 
}  Assignment 2 

}  Last chance for a partner 
}  How’s it going? 
}  If working with a partner,  should both be there when working 

on it! 

Last time 
Game playing as search 
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Last time 
Game playing as search 

 

Assume the opponent will play optimally 
}  MAX is trying to maximize utility 
}  MIN is trying to minimize utility 

 

MINIMAX algorithm backs-up the value from the leaves by alternatively 
minimizing and maximizing action options 

}  plays “optimally”, that is can play no better than 

 

Won’t work for deep trees or trees with large branching factors 

Last time 
Pruning alleviates this be excluding paths 

 

Alpha-Beta pruning retains the optimality, by pruning paths that will never be 
chosen 

}  alpha is the best choice down this path for MAX 
}  beta is the best choice down this path for MIN 

4 12 7 

A11 A12 A13 

10 3 16 

A21 A22 A23 

2 4 1 

A31 A32 A33 

A3 A2 A1 

Pruning: do we have to traverse the whole tree? 

MIN 

MAX 

4 12 7 

A11 A12 A13 

10 3 

A21 A22 

2 

A31 

A3 A2 

Minimax example 2 

4 

A1 

3? 2? 

prune! 

MIN 

MAX 
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Baby NIM2: take 1, 2 or 3 sticks 

6 
def maxValue(state, alpha, beta): 
   if state is terminal: 
      return utility(state) 
   else: 
      value = -∞ 
      for all actions a in actions(state): 
         value = max(value, minValue(result(state,a), alpha, beta) 
         if value >= beta: 
            return value # prune! 
         alpha = max(alpha, value) # update alpha  
      return value               

We’re making a decision for MAX.   
•  When considering MIN’s choices, if we find a value that is greater than 
beta, stop, because MIN won’t make this choice 
•  if we find a better path than alpha, update alpha 
 

alpha = best choice we’ve found so far for MAX 
beta = best choice we’ve found so far for MIN 

def minValue(state, alpha, beta): 
   if state is terminal: 
      return utility(state) 
   else: 
      value = +∞ 
      for all actions a in actions(state): 
         value = min(value, maxValue(result(state,a), alpha, beta) 
         if value <= alpha: 
            return value # prune! 
         beta = min(beta, value) # update alpha  
      return value               

We’re making a decision for MIN.   
•  When considering MAX’s choices, if we find a value that is less than 
alpha, stop, because MAX won’t make this choice 
•  if we find a better path than beta for MIN, update beta 
 

alpha = best choice we’ve found so far for MAX 
beta = best choice we’ve found so far for MIN 

Effectiveness of alpha-beta pruning 
As we gain more information about the state of things, 
we’re more likely to prune 
 
What affects the performance of pruning? 

}  key: which order we visit the states 
}  can try and order them so as to improve pruning 
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Effectiveness of pruning 
If perfect state ordering: 

}  O(bm) becomes O(bm/2) 
}  We can solve a tree twice as deep! 

 
Random order: 

}  O(bm) becomes O(b3m/4) 
}  still pretty good 

 
For chess using a basic ordering 

}  Within a factor of 2 of O(bm/2) 

Evaluation functions 
O(bm/2) is still exponential (and that’s assuming optimal pruning) 

}  for chess, this gets us ~10-14 ply deep (a bit more with some more 
heuristics) 
}  200 million moves per second (on a reasonable machine) 
}  355 = 50 million, or < 1 second 

}  not enough to solve most games! 
 
Ideas? 

}  heuristic function – evaluate the desirability of the position 
}  This is not a new idea:   

}  Claude Shannon (think-- information theory, entropy), “Programming a 
Computer for Playing Chess” (1950) 

}  http://vision.unipv.it/IA1/ProgrammingaComputerforPlayingChess.pdf 
¨  page 3 
¨  page 5 

Cutoff search 
How does an evaluation function help us? 

}  search until some stopping criterion is met 
}  return our heuristic evaluation of the state at that point 

}  This serves as a proxy for the actual scoring function 

When should we stop? 
}  as deep as possible, for the time constraints 
}  generally speaking, the further we are down the tree,  the 

more accurate our evaluation function will be 
}  based on a fixed depth 

}  keep track of our depth during recursion 
}  if we reach our depth limit, return EVAL(state) 

Cutoff search 
When should we stop? 

}  fixed depth 

}  based on time 
}  start a timer and run IDS 
}  when we run out of time, return the result from the last completed 

depth 

}  quiescence search 
}  search using one of the cutoffs above 
}  but if we find ourselves in a volatile state (for example a state where a 

piece is about to be captured) keep searching! 
}  attempts to avoid large swings in EVAL scores 
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Heuristic EVAL 
What is the goal of EVAL, our state evaluation function? 

}  estimate the expected utility of the game at a given state 

What are some requirements? 
}  must be efficient (we’re going to be asking this about a lot of 

states) 
}  EVAL should play nice with terminal nodes 

}  it should order terminal nodes in the same order at UTILITY 
}  a win should be the most desirable thing 
}  a loss should be the least desirable thing 

Heuristic EVAL 
What are some desirable properties? 

}  value should be higher the closer we are to a win 
}  and lower the closer we are to a lose 

The quality of the evaluation function impacts the quality of the 
player 

}  Remember last time (De Groot), we expert players were good at 
evaluating board states! 

Simple Mancala Heuristic: Goodness of board = # stones in my  
Mancala minus the number of stones in my opponents. 

Tic Tac Toe evaluation functions 

Ideas? 

X 

O 

X O 

Example Tic Tac Toe EVAL 

Tic Tac Toe 
Assume MAX is using “X” 

EVAL(state) =  
 
if state is win for MAX: 

 + ∞ 
if state is win for MIN: 

 - ∞ 
else: 

(number of rows, columns and diagonals available to MAX) - 
(number of rows, columns and diagonals available to MIN)  

X O 

X 

O 

X O 

= 6 - 4 = 2 

= 4 - 3 = 1 
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Chess evaluation functions 

Ideas? 

Chess EVAL 

Assume each piece has the following values 
pawn  = 1; 
knight  = 3; 
bishop  = 3; 
rook  = 5; 
queen  = 9; 

 
EVAL(state) =  
  sum of the value of white pieces – 
  sum of the value of black pieces 

= 31 - 36 = -5 

Chess EVAL 

Assume each piece has the following values 
pawn  = 1; 
knight  = 3; 
bishop  = 3; 
rook  = 5; 
queen  = 9; 

 
EVAL(state) =  
  sum of the value of white pieces – 
  sum of the value of black pieces 

Any problems with this? 

Chess EVAL 
Ignores actual positions! 

Actual heuristic functions are often 
a weighted combination of features 

€ 

EVAL(s) = w1 f1(s) + w2 f2(s) + w3 f3(s) + ...
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Chess EVAL 

A feature can be any numerical information about the board 
}  as general as the number of pawns 
}  to specific board configurations 

 
Deep Blue: 8000 features! 

€ 

EVAL(s) = w1 f1(s) + w2 f2(s) + w3 f3(s) + ...

number of 
pawns 

number of 
attacked 
knights 

1 if king has 
knighted, 0 
otherwise 

Chess EVAL 

€ 

EVAL(s) = w1 f1(s) + w2 f2(s) + w3 f3(s) + ...

number of 
pawns 

number of 
attacked 
knights 

1 if king has 
knighted, 0 
otherwise 

How can we determine the weights 
(especially if we have 8000 of them!)? 

Chess EVAL 

€ 

EVAL(s) = w1 f1(s) + w2 f2(s) + w3 f3(s) + ...

number of 
pawns 

number of 
attacked 
knights 

1 if king has 
knighted, 0 
otherwise 

Machine learning! 
-  play/examine lots of games 
-  adjust the weights so that the EVAL(s) 
correlates with the actual utility of the states  

Horizon effect 

Who’s ahead?  What move should Black make? 
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Horizon effect 

The White pawn is about to become a queen 

 

A naïve EVAL function may not account for this behavior 

 

We can delay this from happening for a long time by 
putting the king in check 

 

If we do this long enough, it will go beyond our search 
cutoff and it will appear to be a better move than any 
move allowing the pawn to become a queen 

 

But it’s only delaying the inevitable (the book also has 
another good example) 

Other improvements 
Computers have lots of memory these days 
 
DFS (or IDS) is only using a linear amount of memory 
 
How can we utilize this extra memory? 

}  transposition table 
}  history/end-game tables 
}  “opening” moves 
}  … 

Transposition table 
Similar to keeping track of the list of explored states 

}  “transpositions” are differing move sequences that start and 
end in the same place 

 
Keeps us from duplicating work 
 
Can double the search depth in chess! 

history/end-game tables 
History 

}  keep track of the quality of moves from previous games 
}  use these instead of search 

end-game tables 
}  do a reverse search of certain game configurations, for example 

all board configurations with king, rook and king 
}  tells you what to do in any configuration meeting this criterion 
}  if you ever see one of these during search, you lookup exactly 

what to do 
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end-game tables 
Devastatingly good 
 
Allows much deeper branching  

}  for example, if the end-game table encodes a 20-move finish and we can 
search up to 14 

}  can search up to depth 34 
 
Stiller (1996) explored all end-games with 5 pieces 

}  one case check-mate required 262 moves! 
 
Knoval (2006) explored all end-games with 6 pieces 

}  one case check-mate required 517 moves! 

Traditional rules of chess require a capture or pawn move within 50 or 
it’s a stalemate 

Opening moves 
At the very beginning, we’re the farthest possible from any 
goal state 
 
People are good with opening moves 
 
Tons of books, etc. on opening moves 
 
Most chess programs use a database of opening moves 
rather than search 

Chance/non-determinism in games 
All the approaches we’ve looked at are only appropriate for 
deterministic games 
 
Some games have a randomness component, often imparted 
either via dice or shuffling 

Why consider games of chance? 
}  because they’re there! 
}  more realistic… life is not deterministic 
}  more complicated, allowing us to further examine search techniques 

Backgammon 

Basic idea: move your pieces around the board and then off 
 
Amount you get to move is determined by a roll of two dice 
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Backgammon 
If we know the dice rolls, 
then it’s straightforward to 
get the next states 

For example, white rolls a 5 
and a 6 

Possible moves?  

6     5     4     3     2     1 

 13    14    15   16    17    18   19    20    21   22    23    24  

12    11    10    9     8     7 

Backgammon 
If we know the dice rolls, 
then it’s straightforward to 
get the next states 

For example, white rolls a 5 
and a 6 

Possible moves (7-2,7-1),  
(17-12,17-11),  
… 

6     5     4     3     2     1 

 13    14    15   16    17    18   19    20    21   22    23    24  

12    11    10    9     8     7 

Backgammon 

Which is better:  
(7-2,7-1) or  
(17-12,17-11)? 

We’d like to search… 

6     5     4     3     2     1 

 13    14    15   16    17    18   19    20    21   22    23    24  

12    11    10    9     8     7 
Ideas? 

Searching with chance 
}  We know there are 36 

different dice rolls (21 
unique) 

}  Insert a “chance” layer in 
each ply with branching 
factor 21 

}  What does this do to the 
branching factor? 
}  drastically increases the 

branching factor (by a 
factor of 21!) 
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Searching with chance 

Are all dice combinations 
equally likely? 

Searching with chance 

Associate a probability with 
each chance branch 

each double ([1,1], [2,2], …) 
have probability 1/36 

all others have probability 1/18 

Generally the probabilities are 
easy to calculate 

Searching with chance 

Assume we can 
reach the bottom.   
 
How can we 
calculate the value 
of a state? 

Expected minimax value 

Rather than the actual value calculate the expected value 
based on the probabilities 

EXPECTI-MINIMAX-VALUE(n)= 
 UTILITY(n)      If n is a terminal 
 maxs ∈ successors(n) MINIMAX-VALUE(s)        If n is a max node 
 mins ∈ successors(n) MINIMAX-VALUE(s)  If n is a min node 
 ∑s ∈ successors(n) P(s) . EXPECTIMINIMAX(s)   If n is a chance node 

multiply the minimax value by the 
probability of going to that state 
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EXPECTEDMINIMAX example 

2 4 5 3 1 1 6 4 

MIN 

MAX 

CHANCE 

.9 .9 .1 .1 

values? 

EXPECTEDMINIMAX example 

2 4 5 3 1 1 6 4 

MIN 

MAX 

CHANCE 

.9 .9 .1 .1 

2 3 1 4 

values? 

EXPECTEDMINIMAX example 

2 4 5 3 1 1 6 4 

MIN 

MAX 

CHANCE 

.9 .9 .1 .1 

2 3 1 4 

2.1 1.3 

value? 

EXPECTEDMINIMAX example 

2 4 5 3 1 1 6 4 

MIN 

MAX 

CHANCE 

.9 .9 .1 .1 

2 3 1 4 

2.1 1.3 

2.1 
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Chance and evaluation functions 

Does this change any requirements on the 
evaluation function? 

Which move will be picked for these different 
MINIMAX trees? 

Chance and evaluation functions 

Even though we haven’t changed the ranking of the 
final states, we changed the outcome 
 
Magnitude matters, not just ordering 

Games with chance 
Original branching factor b, chance factor n 
 
What happens to our search run-time? 

}  O((nb)m) 
}  in essence, multiplies our branching factor by n 

 
For this reason, many games with chance don’t use much search 

}  backgammon frequently only looks ahead 3 ply 

 
Instead, evaluation functions play a more important roll 

}  TD-Gammon learned an evaluation function by playing itself over a 
million times! 

Partially observable games 
In many games we don’t have all the information about the 
world, for example? 
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Partially observable games 
In many games we don’t have all the information about the 
world 

}  battleship 
}  bridge 
}  poker 
}  scrabble 
}  Kriegspiel 

}  pretty cool game 
}  “hidden” chess 

}  … 
 
How can we deal with this? 

Simple Kriegspeil 
To start with: 

}  I know where my pieces are 
}  and I know exactly where the opponents pieces are 

Simple Kriegspeil 
As the game progresses, though 

}  I know where my pieces are 
}  but I no longer know where the opponents pieces are 

? ? ? ? 

? ? ? ? 
? ? ? 

? 

Simple Kriegspeil 
However, I can have some expectation/estimation of where 
the are 

.25 

0 0 0 
0 

.25 .25 .25 

starts to look like a game of chance 

.75 .75 .75 .75 
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Challenges with partially observable games? 

state space can be huge! 
 
our MINIMAX assumption is probably not true 

}  reasons for the opponent to purposefully play suboptimally 

 
may make moves just to explore 
 
These are hard! 

}  when humans play Kriegspeil, most of the checkmates are 
accidental J 

Other things to watch out for… 

What will minimax do here? 
Is that OK? 
What might you do instead? 

State of the art 
5.7 of the book gives a pretty good recap of popular games 
 
Still lots of research going on! 
 
AAAI has an annual poker competition 
 
Lots of other tournaments going on for a variety of games 
 
New games being invented/examined all the time 

}  google “quantum chess” 
 
University of Alberta has a big games group 

}  http://webdocs.cs.ualberta.ca/~games/ 


