
4/23/13	

1	

+

Knowledge
Representation
CS311 Spring 2013
David Kauchak

+
Admin

n  Video: http://www.cs.cmu.edu/~tom7/mario/

n  Written problems 3 to be looked at by next Monday

n  Status report 1 due on Friday

n  Exam #2 next week
n  Take home

n  Review next Tuesday

+
Agent’s knowledge representation

environment
agent

?

sensors

actuators

What have we seen so far for
knowledge representation?

+
Agent’s knowledge representation

procedural
n  methods that encode how to handle specific situations

n  chooseMoveMancala()

n  driveOnHighway()

model-based
n  bayesian network

n  neural network

n  decision tree

Is this how people do it?

4/23/13	

2	

+
Knowledge-based agent

environment
agent

?

sensors

actuators

Knowledge
 base

+
Knowledge-based approach

Knowledge
Base

Inference
Mechanism(s)

Learning
Mechanism(s)

Examples,
Statements

Questions,
requests

Answers,
analyses

Knowledge base stores
facts/information/rules
about the world

+
What is in a knowledge base?

Facts…

Specific:
n  Middlebury College is a private college!

n  Prof. Kauchak teaches at Middlebury College!

n  2+2 = 4!

n  The answer to the ultimate question of life is 42!

General:
n  All triangles have three sides!

n  All tomatoes are red!

n  n2 = n * n!

+
Inference

Given facts, we’d like to ask questions

n  Key: depending on how we store the facts, this can be easy
or hard

n  People do this naturally (though not perfectly)

n  For computers, we need specific rules

For example:
n  Johnny likes to program in C!

n  C is a hard programming language!

n  Computer scientists like to program in hard languages!

What can we infer?

4/23/13	

3	

+
Inference
For example:

n  Johnny likes to program in C
n  C is a hard programming language

n  Computer scientists like to program in hard languages

Be careful!
we cannot infer that Johnny is a computer scientist

What about now:
n  All people who like to program in hard languages are
computer scientists!

What can we infer?

+
Creating a knowledge-based agent

Representation: how are we going to store our facts?

Inference: How can we infer information from our
facts? How can we ask questions?

Learning: How will we populate our facts?

Knowledge
Base

Inference
Mechanism(s)

Learning
Mechanism(s)

+
Your turn
Knowledge engineer

n  representation: how are you storing facts?
n  inference: how can you algorithmically query these facts?
n  learning: you provide the facts J

Some problems to think about:
n  Give change for some purchase < $1 paid for with a $1
n  Block stacking problems
n  Wumpus world
n  How to make an omelette?
n  How early should I leave for my flight?
n  General reasoning agent (e.g. you)?

Things to think about:
n  any approaches that you’ve seen previously useful?
n  what are the challenges?
n  what things are hard to represent?

C A B C

A
B

+
Propositional logic

Statements are constructed from propositions

A proposition can be either true or false

Statements are made into larger statements using
connectives

Example
n  JohnnyLikesC = true!

n  CisHard = true!

n  CisHard ∧ JohhnyLikesC => JohnnyIsCS!

4/23/13	

4	

+
Propositional logic
Negation: not, ¬, ~

Conjunction: and, ∧

Disjunction: or, ∨

Implication: implies, =>

Biconditional: iff, <=>

+
Propositional logic

A B A⇔B
F F
F T
T F
T T

A B A⇒B
F F
F T
T F
T T

+
Propositional logic

A B A⇔B
F F T
F T F
T F F
T T T

A B A⇒B
F F T
F T T
T F F
T T T

A=>B ≡ ¬A∨B A<=>B ≡ (A=>B)∧(B=>A)

+
Inference with propositional logic

There are many rules that enable new propositions
to be derived from existing propositions

n  Modus Ponens: P => Q, P derive Q

n  deMorgan’s law: ¬(A∧B), derive ¬A∨¬B

View it as a search problem:
n  starting state: current facts/KB

n  actions: all ways of deriving new propositions from the current KB

n  result: add the new proposition to the KB/state

n  goal: when the KB/state contains the proposition we want

4/23/13	

5	

+
Propositional logic for Wumpus

How can we model Wumpus world
using propositional logic? Is
propositional logic a good choice?

+
Propositional logic for Wumpus

Variable for each condition for each square
n  breeze1,1 = false, breeze1,2 = true, …

n  breeze1,1 => pit1,2 or pit2,1, …

Have to enumerate all the states! Can’t say if a
square has a breeze then there is a pit next door

+ First order logic (aka predicate calculus)

Uses objects (entities) and relations/functions

Fixes two key problems with propositional logic
n  Adds relations/functions

n  Likes(John, C)!

n  isA(Obama, person)!

n  isA(Obama, USPresident)!

n  programsIn(John, C)!

n  This is much cleaner than:
n  JohnLikeC!

n  MaryLikesC!

n  JohnLikesMary!

n  …!

+ First order logic (aka predicate calculus)

Quantifiers
n  “for all”: written as an upside down ‘A’ -

n  “there exists”: written as a backwards ‘E’ -

For example:
n  Johnny likes to program in C!

n  C is a hard programming language!

n  All people who like to program in hard languages are
computer scientists!

€

likes(Johnny,C)

€

isHard(C)

€

∀x ∃y likes(x,y)∧ isHard(y) => isA(x,CS)

€

∀

€

∃

4/23/13	

6	

+
From text to logic

There is a Middlebury Student from Hawaii.

Middlebury students live in Middlebury

+
More examples

All purple mushrooms are poisonous

No purple mushroom is poisonous

Every CS student knows a programming
language.

A programming language is known by every CS
student

+
How about…

€

∀x isA(x,Rose) => ∃y has(x,y)∧ thorn(y)

€

∀x ∃y isPerson(x)∧ isPerson(y) => loves(x,y)

€

∃y ∀x isPerson(x)∧ isPerson(y) => loves(x,y)

€

∀x ∃y ∃z isPerson(x)∧ isPerson(y)∧ isTime(z) => loves(x,y)

“Every rose has its thorn”

“Everybody loves somebody”

“There is someone that everyone loves”

“Everybody loves somebody, sometime”

+
First-order logic for Wumpus

How can we model Wumpus world
first order logic?

4/23/13	

7	

+
First-order logic for Wumpus

A little tricky, but much more condensed

€

∀s At(s)∧FeelBreeze(s) => Breezy(s)

€

∀s Breezy(s) <=> ∃r Adjacent(s,r)∧Pit(r)

+
Inference with first-order logic

Similar to predicate logic, can define as a search
problem

PROLOG is an example of an implementation of first-
order logic

+
PROLOG

change([H,Q,D,N,P]) :-
 member(H,[0,1,2]),
 member(Q,[0,1,2,3,4]),
 member(D,[0,1,2,3,4,5,6,7,8,9,10]),
 member(N,[0,1,2,3,4,5,6,7,8,9,10,
 11,12,13,14,15,16,17,18,19,20]),
 S is 50*H + 25*Q +10*D + 5*N,
 S =< 100,
 P is 100-S.

define a new method

define range/possible
values

facts

What would: change([0,2,3,4,6]) give us?

+
PROLOG

change([H,Q,D,N,P]) :-
 member(H,[0,1,2]),
 member(Q,[0,1,2,3,4]),
 member(D,[0,1,2,3,4,5,6,7,8,9,10]),
 member(N,[0,1,2,3,4,5,6,7,8,9,10,
 11,12,13,14,15,16,17,18,19,20]),
 S is 50*H + 25*Q +10*D + 5*N,
 S =< 100,
 P is 100-S.

define a new method

define range/possible
values

facts

no solution

4/23/13	

8	

+
PROLOG

change([H,Q,D,N,P]) :-
 member(H,[0,1,2]),
 member(Q,[0,1,2,3,4]),
 member(D,[0,1,2,3,4,5,6,7,8,9,10]),
 member(N,[0,1,2,3,4,5,6,7,8,9,10,
 11,12,13,14,15,16,17,18,19,20]),
 S is 50*H + 25*Q +10*D + 5*N,
 S =< 100,
 P is 100-S.

define a new method

define range/possible
values

facts

What would: change([0,2,3,2,P]) give us?

+
PROLOG

change([H,Q,D,N,P]) :-
 member(H,[0,1,2]),
 member(Q,[0,1,2,3,4]),
 member(D,[0,1,2,3,4,5,6,7,8,9,10]),
 member(N,[0,1,2,3,4,5,6,7,8,9,10,
 11,12,13,14,15,16,17,18,19,20]),
 S is 50*H + 25*Q +10*D + 5*N,
 S =< 100,
 P is 100-S.

define a new method

define range/possible
values

facts

P=10 (we can make this work if P=10)

+
PROLOG

change([H,Q,D,N,P]) :-
 member(H,[0,1,2]),
 member(Q,[0,1,2,3,4]),
 member(D,[0,1,2,3,4,5,6,7,8,9,10]),
 member(N,[0,1,2,3,4,5,6,7,8,9,10,
 11,12,13,14,15,16,17,18,19,20]),
 S is 50*H + 25*Q +10*D + 5*N,
 S =< 100,
 P is 100-S.

define a new method

define range/possible
values

facts

What would: change([H,Q,D,N,P]) give us?

+
PROLOG

change([H,Q,D,N,P]) :-
 member(H,[0,1,2]),
 member(Q,[0,1,2,3,4]),
 member(D,[0,1,2,3,4,5,6,7,8,9,10]),
 member(N,[0,1,2,3,4,5,6,7,8,9,10,
 11,12,13,14,15,16,17,18,19,20]),
 S is 50*H + 25*Q +10*D + 5*N,
 S =< 100,
 P is 100-S.

define a new method

define range/possible
values

facts

All possible ways of making change for $1!

4/23/13	

9	

+
PROLOG: N-Queens

solve(P) :-
 perm([1,2,3,4,5,6,7,8],P),
 combine([1,2,3,4,5,6,7,8],P,S,D),
 all_diff(S),
 all_diff(D).

combine([X1|X],[Y1|Y],[S1|S],[D1|D]) :-
 S1 is X1 +Y1,
 D1 is X1 - Y1,
 combine(X,Y,S,D).
combine([],[],[],[]).

all_diff([X|Y]) :- \+member(X,Y), all_diff(Y).
all_diff([X]).

http://www.csupomona.edu/~jrfisher/www/prolog_tutorial/contents.html

+
Logic, the good and the bad

Good:
n  Mathematicians have been working on it for a while

n  Logical reasoning is straightforward

n  tools (like PROLOG) exist to help us out

Bad:
n  Dealing with exceptions is hard

n  not all tomatoes are red

n  sometimes our weather rock is wet, even though its not
raining

n  Can be unintuitive for people

n  Going from language to logic is very challenging

n  Many restrictions on what you can do

+
Challenges

General domain reasoning is hard!
n ACTIONS

n TIME
n BELIEFS

Chapt 12 in the book talks about a lot of these
challenges

n organizing objects into a hierarchy (shared/inherited
properties… like inheritance in programming)

n dealing with measurements
n …

At the end of the day, these don’t work very well

+
Ontology

First-order logic states relationships between objects

One easy way to represent a similar concept is with a graph
n  nodes are the objects

n  edges represent relationships between nodes

n  some of the quantifier capability is lost

pants socks

clothing legs
pair

khakis

instanceOf

instanceOf

instanceOf wornOn

comeIn

4/23/13	

10	

+
Ontology

Intuitive representation for people

Can pose questions as graph traversals which is often more
comfortable/efficient

pants socks

clothing legs
pair

khakis

instanceOf

instanceOf

instanceOf wornOn

comeIn

+
Opencyc

http://sw.opencyc.org/

The good:
n hundreds of thousands of terms
n millions of relationships
n  includes proper nouns
n  includes links to outside information (wikipedia)

The bad:
n  still limited coverage
n  limited/fixed relationships

+
WordNet

http://wordnet.princeton.edu/

The good:
n  155K words

n  word senses (and lots of them)

n  part of speech

n  example usage

n  definitions

n  frequency information

n  some interesting uses already

n  word similarity based on graph distances

n  word sense disambiguation

+
WordNet

The bad:
n  limited relationships

n  only “linguistic” relationships

n  hyponym (is-a)

n  hypernym (parent of is-a)

n  synonym

n  holonym (part/whole)

n  sometimes too many senses/too fine a granularity

4/23/13	

11	

+
Open mind common sense

Use the intellect of the masses!

http://openmind.media.mit.edu/

The good:
n  much broader set of relationships

n  lots of human labeling

n  can collect lots of data

n  human labeled

n  reduces spam

n  more general statement engine

+
Open mind common sense

The bad:
n  relies on the user

n  still a limited vocabulary

n  only scoring is voting

n  limited coverage in many domains

+
NELL

NELL: Never-Ending Language Learning
n  http://rtw.ml.cmu.edu/rtw/

n  continuously crawls the web to grab new data

n  learns entities and relationships from this data

n  started with a seed set

n  uses learning techniques based on current KB to learn
new information

+
NELL

4 different approaches to learning relationships

Combine these in the knowledge integrator
n  idea: using different approaches will avoid overfitting

Initially was wholly unsupervised, now some human supervision
n  cookies are food => internet cookies are food => files are food

4/23/13	

12	

+
An example learner:
coupled pattern learner (CPL)

Cities:

Los Angeles
San Francisco
New York
Seattle
…

… city of X …
... the official guide to X …
… only in X …
… what to do in X …
… mayor of X …

extract occurrences
of group

statistical co-
occurrence test

… mayor of X …

+
CPL

… mayor of <CITY> …

extract other cities
from the data

Albequerque
Springfield
…

+
CPL

Can also learn patterns with multiple groups

… X is the mayor of Y …
… X plays for Y …
... X is a player of Y …

can extract other groups, but
also relationships

Antonio
Villaraigosa Los Angeles mayor of

+
NELL performance

For more details: http://rtw.ml.cmu.edu/papers/carlson-aaai10.pdf

estimated
accuracy in
red

4/23/13	

13	

+
NELL

The good:
n  Continuously learns

n  Uses the web (a huge data source)

n  Learns generic relationships

n  Combines multiple approaches for noise reduction

The bad:
n  makes mistakes (overall accuracy still may be problematic for

real world use)

n  does require some human intervention

n  still many general phenomena won’t be captured

