What have we seen so far for knowledge representation?

- Agent's knowledge representation
 - procedural
 - methods that encode how to handle specific situations
 - chooseMoveMancala()
 - driveOnHighway()
 - model-based
 - bayesian network
 - neural network
 - decision tree

Is this how people do it?
Knowledge-based agent

Knowledge-based approach

What is in a knowledge base?

Facts...

Specific:
- Middlebury College is a private college
- Prof. Kauchak teaches at Middlebury College
- 2+2 = 4
- The answer to the ultimate question of life is 42

General:
- All triangles have three sides
- All tomatoes are red
- $n^2 = n \cdot n$

Inference

Given facts, we’d like to ask questions
- Key: depending on how we store the facts, this can be easy or hard
- People do this naturally (though not perfectly)
- For computers, we need specific rules

For example:
- Johnny likes to program in C
- C is a hard programming language
- Computer scientists like to program in hard languages

What can we infer?
Inference

For example:
- Johnny likes to program in C
- C is a hard programming language
- Computer scientists like to program in hard languages

Be careful!
we cannot infer that Johnny is a computer scientist

What about now:
- All people who like to program in hard languages are computer scientists

What can we infer?

Creating a knowledge-based agent

Representation: how are we going to store our facts?

Inference: How can we infer information from our facts? How can we ask questions?

Learning: How will we populate our facts?

Knowledge Base

Inference

Mechanism(s)

Learning

Mechanism(s)

Your turn

Knowledge engineer
- representation: how are you storing facts?
- inference: how can you algorithmically query these facts?
- learning: you provide the facts

Some problems to think about:
- Give change for some purchase < $1 paid for with a $1
- Block stacking problems
- Wumpus world
- How to make an omelette?
- How early should I leave for my flight?
- General reasoning agent (e.g. you)?

Things to think about:
- any approaches that you’ve seen previously useful?
- what are the challenges?
- what things are hard to represent?

Propositional logic

Statements are constructed from propositions
A proposition can be either true or false

Statements are made into larger statements using connectives

Example
- JohnnyLikesC = true
- CisHard = true
- CisHard ∧ JohnnyLikesC => JohnnyIsCS
Propositional logic

- Negation: not, \(\neg, \sim \)
- Conjunction: and, \(\land \)
- Disjunction: or, \(\lor \)
- Implication: implies, \(\rightarrow \)
- Biconditional: iff, \(\iff \)

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>A \rightarrow B</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

\[
A \equiv B \iff \neg A \lor B
\]

\[
A \equiv B \iff (A \rightarrow B) \land (B \rightarrow A)
\]

Inference with propositional logic

There are many rules that enable new propositions to be derived from existing propositions:

- Modus Ponens: \(P \rightarrow Q, P \) derive \(Q \)
- DeMorgan’s law: \(\neg (A \land B) \), derive \(\neg A \lor \neg B \)

View it as a search problem:

- Starting state: current facts/KB
- Actions: all ways of deriving new propositions from the current KB
- Result: add the new proposition to the KB/state
- Goal: when the KB/state contains the proposition we want
Propositional logic for Wumpus

How can we model Wumpus world using propositional logic? Is propositional logic a good choice?

First order logic (aka predicate calculus)

Uses objects (entities) and relations/functions

Fixes two key problems with propositional logic
- Adds relations/functions
- likes(John, C)
- isA(Obama, person)
- isA(Obama, USPresident)
- programsIn(John, C)

This is much cleaner than:
- JohnLikeC
- MaryLikesC
- JohnLikesMary
- ...

Quantifiers
- “for all”: written as an upside down ‘A’ - ∀
- “there exists”: written as a backwards ‘E’ - ∃

For example:
- Johnny likes to program in C
- C is a hard programming language
- All people who like to program in hard languages are computer scientists

∀x ∃y likes(x,y) ∧ isHard(y) → isA(x,CS)
From text to logic

There is a Middlebury Student from Hawaii.

Middlebury students live in Middlebury

More examples

All purple mushrooms are poisonous

No purple mushroom is poisonous

Every CS student knows a programming language.

A programming language is known by every CS student

How about...

∀x isA(x,Rose) => ∃y has(x,y) ∧ thorn(y)
"Every rose has its thorn"

∀x ∃y isPerson(x) ∧ isPerson(y) => loves(x,y)
"Everybody loves somebody"

∃y ∀x isPerson(x) ∧ isPerson(y) => loves(x,y)
"There is someone that everyone loves"

∀x ∃y ∃z isPerson(x) ∧ isPerson(y) ∧ isTime(z) => loves(x,y)
"Everybody loves somebody, sometime"

First-order logic for Wumpus

How can we model Wumpus world first order logic?
First-order logic for Wumpus

A little tricky, but much more condensed

\[\forall s \, At(s) \land \text{FeelBreeze}(s) \Rightarrow \text{Breezy}(s) \]

\[\forall s \, \text{Breezy}(s) \iff \exists s \, \text{Adjacent}(s,r) \land \text{Pit}(r) \]

Inference with first-order logic

Similar to predicate logic, can define as a search problem

PROLOG is an example of an implementation of first-order logic

PROLOG

`change([H,Q,D,N,P]) :-`

- `member(H,[0,1,2]),`
- `member(Q,[0,1,2,3,4]),`
- `member(D,[0,1,2,3,4,5,6,7,8,9,10]),`
- `member(N,[0,1,2,3,4,5,6,7,8,9,10, 11,12,13,14,15,16,17,18,19,20]),`
- `S is 50*H + 25*Q + 10*D + 5*N,`
- `S ==< 100,`
- `P is 100-S.`

`define a new method`

`define range/possible values`

`facts`

What would `change([0,2,3,4,6])` give us?

PROLOG

`change([H,Q,D,N,P]) :-`

- `member(H,[0,1,2]),`
- `member(Q,[0,1,2,3,4]),`
- `member(D,[0,1,2,3,4,5,6,7,8,9,10]),`
- `member(N,[0,1,2,3,4,5,6,7,8,9,10, 11,12,13,14,15,16,17,18,19,20]),`
- `S is 50*H + 25*Q + 10*D + 5*N,`
- `S ==< 100,`
- `P is 100-S.`

`define a new method`

`define range/possible values`

`facts`

`no solution`
What would: change([0,2,3,2,P]) give us?

P=10 (we can make this work if P=10)

What would: change([H,Q,D,N,P]) give us?

All possible ways of making change for $1!
PROLOG: N-Queens

```prolog
solve(P) :-
  perm([1,2,3,4,5,6,7,8], P),
  combined([1,2,3,4,5,6,7,8], P, D),
  all_diff([D]),
  all_diff([D]).
combined([X1|X], [Y1|Y], [S1|S], [D1|D]) :-
  S1 is X1 + Y1,
  D1 is X1 - Y1,
  combined(X, Y, S, D).
combined([], []).
all_diff([X|Y]) :-
  not member(X, Y),
  all_diff(Y).
all_diff([X]).
```

http://www.csupomona.edu/~jrfisher/www/prolog_tutorial/contents.html

Logic, the good and the bad

Good:
- Mathematicians have been working on it for a while
- Logical reasoning is straightforward
- tools (like PROLOG) exist to help us out

Bad:
- Dealing with exceptions is hard
- not all tomatoes are red
- sometimes our weather rock is wet, even though its not raining
- Can be unintuitive for people
- Going from language to logic is very challenging
- Many restrictions on what you can do

Challenges

General domain reasoning is hard!
- ACTIONS
- TIME
- BELIEFS

Chapt 12 in the book talks about a lot of these challenges
- organizing objects into a hierarchy (shared/inherited properties…like inheritance in programming)
- dealing with measurements
- …

At the end of the day, these don’t work very well

Ontology

First-order logic states relationships between objects

One easy way to represent a similar concept is with a graph
- nodes are the objects
- edges represent relationships between nodes
- some of the quantifier capability is lost
Ontology

Intuitive representation for people
Can pose questions as graph traversals which is often more comfortable/efficient

Opencyc

http://sw.opencyc.org/
The good:
- hundreds of thousands of terms
- millions of relationships
- includes proper nouns
- includes links to outside information (wikipedia)
The bad:
- still limited coverage
- limited/fixed relationships

WordNet

http://wordnet.princeton.edu/
The good:
- 168K words
- word senses (and lots of them)
- part of speech
- example usage
- definitions
- frequency information
 - some interesting uses already
 - word similarity based on graph distances
 - word sense disambiguation

WordNet

The bad:
- limited relationships
- only "linguistic" relationships
- hyponym (is-a)
- hypernym (parent of is-a)
- synonym
- holonym (part/whole)
- sometimes too many senses/too fine a granularity
Open mind common sense

Use the intellect of the masses!

http://openmind.media.mit.edu/

The good:
- much broader set of relationships
- lots of human labeling
- can collect lots of data
- human labeled
- reduces spam
- more general statement engine

The bad:
- relies on the user
- still a limited vocabulary
- only scoring is voting
- limited coverage in many domains

NELL

NELL: Never-Ending Language Learning

- http://rtw.ml.cmu.edu/rtw/
- continuously crawls the web to grab new data
- learns entities and relationships from this data
 - started with a seed set
 - uses learning techniques based on current KB to learn new information

4 different approaches to learning relationships

Combine these in the knowledge integrator
- idea: using different approaches will avoid overfitting

Initially was wholly unsupervised, now some human supervision
- cookies are food => internet cookies are food => files are food
An example learner:

coupled pattern learner (CPL)

Cities:

Los Angeles
San Francisco
New York
Seattle

... city of X ...
... the official guide to X ...
... only in X ...
... what to do in X ...
... mayor of X ...

extract occurrences of group

statistical co-occurrence test

CPL

... mayor of <CITY> ...

extract other cities from the data

Albuquerque
Springfield

CPL

Can also learn patterns with multiple groups

... X is the mayor of Y ...
... X plays for Y ...
... X is a player of Y ...

can extract other groups, but also relationships

Antonio Villaraigosa
mayor of Los Angeles

CPL

NELL performance

estimated accuracy in red

For more details: http://rtw.ml.cmu.edu/papers/carlson-aaai10.pdf
NELL

The good:
- Continuously learns
- Uses the web (a huge data source)
- Learns generic relationships
- Combines multiple approaches for noise reduction

The bad:
- Makes mistakes (overall accuracy still may be problematic for real world use)
- Does require some human intervention
- Still many general phenomena won’t be captured