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http://www.youtube.com/watch?v=OR_-Y-eIlQo 

Machine learning: 
Unsupervised learning"

David Kauchak 
cs311 

Spring 2013 
adapted from: 

http://www.stanford.edu/class/cs276/handouts/lecture17-clustering.ppt 

Administrative 

n  Assignment 5 out 
n  due next Friday… get started now! 
n  implement k-means 
n  experiment with variants 

n  good chance to practice experimentation/analysis 

k-means demo 
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Clustering evaluation 
Use data with known classes 

n  For example, document classification data 
 

data Label 

Ideally produce clusters 
that mimic labels 

Common approach: use labeled data 

Purity, the proportion of the dominant class in the cluster 

•         • 
     •   • 
      

•         • 
•   • 
     •  • 

•         • 
     •   • 
       • 

Cluster I Cluster II Cluster III 

Cluster I: Purity = 1/4 (max(3, 1, 0)) = 3/4 

Cluster II: Purity = 1/6 (max(1, 4, 1)) = 4/6 

Cluster III: Purity = 1/5 (max(2, 0, 3)) = 3/5 
Overall purity? 

Overall purity 

Cluster average: 
 
 
 
Weighted average: 

3
4
+
4
6
+
3
5

3
= 0.672

Cluster I: Purity = 1/4 (max(3, 1, 0)) = 3/4 

Cluster II: Purity = 1/6 (max(1, 4, 1)) = 4/6 

Cluster III: Purity = 1/5 (max(2, 0, 3)) = 3/5 
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5
15

=
3+ 4+3
15

= 0.667

Purity issues… 

Purity, the proportion of the dominant class in the 
cluster 
 
Good for comparing two algorithms, but not 
understanding how well a single algorithm is doing, 
why? 

n  Increasing the number of clusters increases purity 
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Purity isn’t perfect 

Which is better based on purity? 
 
Which do you think is better? 
 
Ideas? 

Common approach: use labeled data 

Average entropy of classes in clusters 

where p(classi) is proportion of class i in cluster 

entropy(cluster) = − p(classi )log p(classi )
i
∑

Common approach: use labeled data 

Average entropy of classes in clusters 

entropy? 

entropy(cluster) = − p(classi )log p(classi )
i
∑

Common approach: use labeled data 

Average entropy of classes in clusters 

−0.5log0.5− 0.5log0.5=1

entropy(cluster) = − p(classi )log p(classi )
i
∑

−0.5log0.5− 0.25log0.25− 0.25log0.25=1.5
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Problems with K-means 

Determining K is challenging 
 
Spherical assumption about the data (distance to 
cluster center) 
Hard clustering isn’t always right 
 
Greedy approach 

Problems with K-means 

What would K-means give us here? 

Assumes spherical clusters 

k-means assumes spherical clusters! 

EM clustering:  
mixtures of Gaussians 

Assume data came from a mixture of Gaussians (elliptical data), 
assign data to cluster with a certain probability 

k-means EM 
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Bayesian Classification 
We represent a data item based on the features: 

  

€ 

D = f1, f2,…, fn

Classifying 

Given an new example, the Bayesian model 
gives us the probability of the model 
belonging to that class 

  

€ 

label = argmax
l∈Labels

P(l | f1, f2,…, fn )

Unsupervised 
We represent a data item based on the features: 

  

€ 

D = f1, f2,…, fn

P( f1, f2,…, fn | cluster)

How likely is a point to be long to a cluster… 

Training a Bayesian Classifier 

p(Label | f1, f2,..., fn )

f1, f2, f3, …, fn 

f1, f2, f3, …, fn 

f1, f2, f3, …, fn 

f1, f2, f3, …, fn 

f1, f2, f3, …, fn 

features Label 

0 

0 

1 

1 

0 

train a  
predictive 
model 

classifier 

Training 

P(Label | Features) =

P(Features | cluster) = not as clear here… 

use Bayes rule and learn 
p(feature|Label) 



6 

EM is a general framework 

Create an initial model, θ’  
n  Arbitrarily, randomly, or with a small set of training examples 

Use the model θ’ to obtain another model θ such that 

 Σi log Pθ(datai) > Σi log Pθ’(datai) 

Let θ’ = θ and repeat the above step until reaching a local 
maximum 

n  Guaranteed to find a better model after each iteration 

Where else have you seen EM? 

i.e. better models data 
(increased log likelihood) 

EM shows up all over the place 
Training HMMs (Baum-Welch algorithm) 
 
Learning probabilities for Bayesian networks 
 
EM-clustering 
 
Learning word alignments for language translation 
 
Learning Twitter friend network 
 
Genetics 
 
Finance 
 
Anytime you have a model and unlabeled data! 

E and M steps: creating a better model 

Expectation: Given the current model, figure out the expected 
probabilities of the data points to each cluster 

Maximization: Given the probabilistic assignment of all the 
points, estimate a new model, θc  

p(x|θc) What is the probability of each point 
belonging to each cluster? 

Just like NB maximum likelihood estimation, except 
we use fractional counts instead of whole counts 

Similar to k-means 

Iterate: 
Assign/cluster each point to closest center 

 
Recalculate centers as the mean of the points in a 
cluster 

Expectation: Given the current model, 
figure out the expected probabilities of 
the points to each cluster 

p(x|θc) 

Maximization: Given the probabilistic 
assignment of all the points, estimate a new 
model, θc  
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E and M steps 
Expectation: Given the current model, figure out the expected 
probabilities of the data points to each cluster 

Maximization: Given the probabilistic assignment of all the 
points, estimate a new model, θc  

each iterations increases the likelihood of the data and 
guaranteed to converge (though to a local optimum)! 

Iterate: 

Model: mixture of Gaussians 

( )
1

/2
1 1[ ; , ] exp[ ( ) ( )]

22 det( )
T

dN x x xµ µ µ
π

−Σ = − − Σ −
Σ

Covariance determines  
the shape of these 
contours 

• Fit these Gaussian densities to the data, one per cluster 

EM example  

Figure from Chris Bishop 

EM example  

Figure from Chris Bishop 
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EM 

EM is a general purpose approach for training a 
model when you don’t have labels 

Not just for clustering! 
n  K-means is just for clustering 

One of the most general purpose unsupervised 
approaches 

n  can be hard to get right! 

Finding Word Alignments 

… la maison … la maison bleue … la fleur … 
 
 
… the house … the blue house … the flower … 

In machine translation, we train from pairs of translated 
sentences 
 
Often useful to know how the words align in the sentences 
 
Use EM! 

•  learn a model of P(french-word | english-word) 

Finding Word Alignments 

All word alignments are equally likely 
 
All P(french-word | english-word) equally likely 

… la maison … la maison bleue … la fleur … 
 
 
… the house … the blue house … the flower … 

Finding Word Alignments 

“la” and “the” observed to co-occur frequently, 
so P(la | the) is increased. 

… la maison … la maison bleue … la fleur … 
 
 
… the house … the blue house … the flower … 
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Finding Word Alignments 

“house” co-occurs with both “la” and “maison”, but 
P(maison | house) can be raised without limit,  to 1.0, 
while P(la | house) is limited because of “the” 
 
(pigeonhole principle) 

… la maison … la maison bleue … la fleur … 
 
 
… the house … the blue house … the flower … 

Finding Word Alignments 

settling down after another iteration 

… la maison … la maison bleue … la fleur … 
 
 
… the house … the blue house … the flower … 

Finding Word Alignments 

Inherent hidden structure revealed by EM training! 
For details, see  
    - “A Statistical MT Tutorial Workbook” (Knight, 1999). 
           - 37 easy sections, final section promises a free beer. 

    - “The Mathematics of Statistical Machine Translation” 
        (Brown et al, 1993) 
    - Software:  GIZA++ 

… la maison … la maison bleue … la fleur … 
 
 
… the house … the blue house … the flower … 

Statistical Machine Translation 

P(maison | house ) = 0.411 
P(maison | building) = 0.027 
P(maison | manson) = 0.020 
… 

Estimating the model from training data 

… la maison … la maison bleue … la fleur … 
 
 
… the house … the blue house … the flower … 
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Other clustering algorithms 

K-means and EM-clustering are by far the most 
popular for clustering 
 
However, they can’t handle all clustering tasks 

What types of clustering problems can’t they 
handle? 

Non-gaussian data 

What is the problem? 

Similar to 
classification:  
global decision vs. 
local decision 

Spectral clustering 

0.1 

0.2 

0.8 

0.7 

0.6 

0.8 

0.8 

0.8 

E={wij}  Set of weighted edges indicating pair-wise 
  similarity between points 

Similarity Graph 
Represent dataset as a weighted graph G(V,E) 
Data points: },...,,{ 621 xxx

1 

2 

3 

4 

5 

6 

V={xi}  Set of n vertices representing points 

What does clustering represent? 

Graph Partitioning 
Clustering can be viewed as partitioning a similarity graph 

Bi-partitioning task: 
n  Divide vertices into two disjoint groups (A,B) 

1 

2

3

4

5

6

A B 

What would define a good partition? 



11 

Clustering Objectives 
Traditional definition of a “good” clustering: 

1.  within cluster should be highly similar. 
2.  between different clusters should be highly dissimilar. 

2. Minimise weight of between-group connections 

0.1 

0.2 

1. Maximise weight of within-group connections 

0.8 

0.7 

0.6 

0.8 

0.8 

0.8 

1 

2 

3 

4 

5 

6 

Apply these objectives to our graph representation 

Graph Cuts 
Express partitioning objectives as a function of the “edge cut” of the 
partition. 
 
Cut: Set of edges with only one vertex in a group. 

∑
∈∈

=
BjAi
ijwBAcut

,
),(

0.1 

0.2 

0.8 

0.7 

0.6 

0.8 
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6 

0.8 

A B 

cut(A,B) = 0.3 

Can we use the minimum cut? 

Graph Cut Criteria 

Optimal cut 
Minimum cut 

Problem: 
n  Only considers external cluster connections 
n  Does not consider internal cluster density 

Graph Cut Criteria 

Criterion: Normalised-cut (Shi & Malik,’97) 
Consider the connectivity between groups relative to the density 
of each group: 

Normalize the association between groups by volume 
n  Vol(A): The total weight of the edges within 

group A  

)(
),(

)(
),(),(min

Bvol
BAcut

Avol
BAcutBANcut +=
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Normalized cut 

Vol(A): The total weight of the edges originating from group A  
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)(
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Bvol
BAcut

Avol
BAcutBANcut +=

maximize within group 
connections 

minimize between group 
connections 

Spectral clustering examples 

Ng et al On Spectral clustering: analysis and algorithm 

Spectral clustering examples 

Ng et al On Spectral clustering: analysis and algorithm 

Spectral clustering examples 

Ng et al On Spectral clustering: analysis and algorithm 
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Hierarchical Clustering 

Recursive partitioning/merging of a data set 

1	


2	


3	


4	


5	


    1           2       3      4            5	


1-clustering	


2-clustering	


3-clustering	


4-clustering	


5-clustering	


Represents all partitionings of the data 
 
Frequently binary dendograms, but n-ary 
dendograms are generally easy to obtain 
with minor changes to the algorithms 

Dendogram 

Dendogram 

Can obtain any k-clustering 
from the dendogram 

Where is the 4-clustering?  

Advantages of hierarchical clustering 

Don’t need to specify the number of clusters 
 
Good for data visualization 

n  See how the data points interact at many levels 
n  Can view the data at multiple levels of granularity 
n  Understand how all points interact 

 
Specifies all of the K clusterings/partitions 
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Hierarchical clustering 

Ideas?  How are we going to do this? 

Hierarchical Clustering 
Common in many domains 

n  Biologists and social scientists 
n  Gene expression data 
n  Document/web page organization 

n  DMOZ 
n  Yahoo directories 

 

 

animal 

vertebrate 

fish reptile amphib. mammal      worm insect crustacean 

invertebrate 

Two main approaches… 

Divisive hierarchical clustering 
Finding the best partitioning of the data is generally 
exponential in time 
 
Common approach: 

n  Let C be a set of clusters 
n  Initialize C to be the one-clustering of the data 
n  While there exists a cluster c in C 

n  remove c from C 
n  partition c into 2 clusters using a flat clustering algorithm, c1 and 

c2 
n  Add to c1 and c2 C 

 
Bisecting k-means 

Divisive clustering 
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Divisive clustering 

start with one cluster 

Divisive clustering 
split using flat clustering 

Divisive clustering Divisive clustering 
split using flat clustering 
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Divisive clustering 
split using flat clustering 

Divisive clustering 

Note, there is a “temporal” component not seen here 

Hierarchical Agglomerative Clustering 
(HAC) 

Let C be a set of clusters 
Initialize C to be all points/docs as separate clusters 
 
While C contains more than one cluster 

n  find c1 and c2 in C that are closest together 
n  remove c1 and c2 from C 
n  merge c1 and c2 and add resulting cluster to C 

 
The history of merging forms a binary tree or hierarchy 

How do we measure the distance between clusters? 

Distance between clusters 

Single-link 
n  Similarity of the most similar (single-link) 

€ 

max
l∈L,r∈R

sim(l,r)
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Distance between clusters 

Complete-link 
n  Similarity of the “furthest” points, the least similar 

Why are these “local” methods used? efficiency 

€ 

min
l∈L,r∈R

sim(l,r)

Distance between clusters 

Centroid 
n  Clusters whose centroids (centers of gravity) are 

the most similar 

2)()( RL µµ −

Distance between clusters 

Centroid 
n  Clusters whose centroids (centers of gravity) are 

the most similar 

2)()( RL
RL
RL

µµ −
+

⋅
Ward’s method What does this do? 

Distance between clusters 

Centroid 
n  Clusters whose centroids (centers of gravity) are 

the most similar 

2)()( RL
RL
RL

µµ −
+

⋅
Ward’s method Encourages similar 

sized clusters 
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Distance between clusters 

Average-link 
n  Average similarity between all pairs of elements 

∑ ∈∈
−

⋅ RyLx
yx

RL ,

21

Single Link Example 

Complete Link Example Computational Complexity 
For 

n  m dimensions 
n  n documents/points 

 
How many iterations? 

n  n-1 iterations 
 
First iteration 

n  Need to compute similarity of all pairs of n points/documents: O(n2m) 
 
Remaining n-2 iterations 

n  compute the distance between the most recently created cluster and all other 
existing clusters: O(nm) 

n  Does depend on the cluster similarity approach 
 
Overall run-time: O(n2m) – generally slower than flat clustering! 
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single linkage 

complete linkage 

Problems with hierarchical clustering 


