

http://www.youtube.com/watch?v=OR_-Y-ellQo

Machine learning: Unsupervised learning

David Kauchak cs311

Spring 2013 adapted from: entuiclass/cs276/handouts/lecture17-clustering.ppt

Administrative

- Assignment 5 out
 - due next Friday... get started now!
 - implement k-means
 - experiment with variants
 - good chance to practice experimentation/analysis

k-means demo

1

Purity issues...

Purity, the proportion of the dominant class in the cluster

Good for comparing two algorithms, but not understanding how well a single algorithm is doing, why?

Increasing the number of clusters increases purity

Problems with K-means

Determining K is challenging

Spherical assumption about the data (distance to cluster center) Hard clustering isn't always right

Greedy approach

Problems with K-means

Bayesian Classification

We represent a data item based on the features:

 $D = \left\langle f_1, f_2, \dots, f_n \right\rangle$

Classifying

 $label = \underset{l \in Labels}{\operatorname{argmax}} P(l \mid f_1, f_2, \dots, f_n)$

Given an *new* example, the Bayesian model gives us the probability of the model belonging to that class Unsupervised We represent a data item based on the features:

 $D = \left\langle f_1, f_2, \dots, f_n \right\rangle$

$$P(f_1, f_2, \dots, f_n \mid cluster)$$

How likely is a point to be long to a cluster...

Training	
P(Label Features) =	use Bayes rule and learn p(feature Label)
P(Features cluster) =	not as clear here

EM is a general framework

Create an initial model, θ' • Arbitrarily, randomly, or with a small set of training examples

Use the model θ to obtain another model θ such that

 $\sum_{i} \log \mathsf{P}_{\theta}(\mathsf{data}_{i}) > \sum_{i} \log \mathsf{P}_{\theta}(\mathsf{data}_{i}) \quad i.e. \text{ better models data} \\ (increased log likelihood)$

Let $\theta' = \theta$ and repeat the above step until reaching a local maximum

Guaranteed to find a better model after each iteration

Where else have you seen EM?

EM shows up all over the place

Training HMMs (Baum-Welch algorithm)

Learning probabilities for Bayesian networks

EM-clustering

Learning word alignments for language translation

Learning Twitter friend network

Genetics

Finance

Anytime you have a model and unlabeled data!

E and M steps: creating a better model

Expectation: Given the current model, figure out the expected probabilities of the data points to each cluster

 $p(x|\theta_c)$ What is the probability of each point belonging to each cluster?

Maximization: Given the probabilistic assignment of all the points, estimate a new model, θ_r

Just like NB maximum likelihood estimation, except we use fractional counts instead of whole counts

Similar to k-means

Iterate:

Assign/cluster each point to closest center Expectation: Given the current model,

figure out the expected probabilities of $p(x|\theta_c)$ the points to each cluster

Recalculate centers as the mean of the points in a cluster

Maximization: Given the probabilistic assignment of all the points, estimate a new model, $\theta_{\rm c}$

E and M steps

Expectation: Given the current model, figure out the expected probabilities of the data points to each cluster

Maximization: Given the probabilistic assignment of all the points, estimate a new model, $\theta_{\rm c}$

Iterate:

each iterations increases the likelihood of the data and guaranteed to converge (though to a local optimum)!

ΕM

EM is a general purpose approach for training a model when you don't have labels

Not just for clustering! • K-means is just for clustering

One of the most general purpose unsupervised approaches

can be hard to get right!

Finding Word Alignments

... la maison ... la maison bleue ... la fleur ...

... the house ... the blue house ... the flower ...

In machine translation, we train from pairs of translated sentences $% \left({{{\mathbf{r}}_{\mathrm{s}}}_{\mathrm{s}}} \right)$

Often useful to know how the words align in the sentences

Use EM! • learn a model of P(french-word | english-word)

Finding Word Alignments

All word alignments are equally likely

All P(french-word | english-word) equally likely

Finding Word Alignments	
la maison la maison bleue la fleur the house the blue house the flower	
"house" co-occurs with both "la" and "maison", but P(maison house) can be raised without limit, to 1.0, while P(la house) is limited because of "the" (pigeonhole principle)	

K-means and EM-clustering are by far the most popular for clustering

However, they can't handle all clustering tasks

What types of clustering problems can't they handle?

Two main approaches...

acean

Hierarchical Agglomerative Clustering (HAC)

Let C be a set of clusters

Initialize C to be all points/docs as separate clusters

While **C** contains more than one cluster

- find c₁ and c₂ in C that are closest together
- remove c_1 and c_2 from **C**
- merge c₁ and c₂ and add resulting cluster to C

The history of merging forms a binary tree or hierarchy

How do we measure the distance between clusters?

