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David Kauchak, CS311, Spring 2013 

Linear Classifiers/SVMs 

Admin 

•  Midterm exam posted 
•  Assignment 4 due Friday by 6pm 
•  No office hours tomorrow 

Math 
Machine learning often involves a lot of math 

–  some aspects of AI also involve some familiarity 
 
Don’t let this be daunting 

– Many of you have taken more math than me 
– Gets better over time 
– Often, just have to not be intimidated 

Learning 

environment 
agent 

? 

sensors 

actuators 

As an agent interacts with the world, it should 
learn about it’s environment 
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Quick review 

•  Three classifiers 
– Naïve Bayes 
–  k-nearest neighbor 
–  decision tree 
–  good and bad? 

•  Bias vs. variance 
–  a measure of the model 
–  where do NB, k-nn and decision trees fit on the bias/

variance spectrum?  

Separation by Hyperplanes 
A strong high-bias assumption is linear separability: 

–  in 2 dimensions, can separate classes by a line 
–  in higher dimensions, need hyperplanes 

Hyperplanes 

A hyperplane is line/plane in a high dimensional 
space 

What defines a hyperplane? 
What defines a line? 

Hyperplanes 
A hyperplane in an n-dimensional space is 
defined by n+1 values 

€ 

0 = w1 f1 + w2 f2 + ...+ wn fn + wn+1

e.g. a line 

or a plane 

€ 

0 = w1 f1 + w2 f2 + w3

€ 

0 = w1 f1 + w2 f2 + w3 f3 + w4

f(x) = ax+b 

f(x,y) = ax+by + c 
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NB as a linear classifier 
To classify: 

€ 

argmaxC P(C | f1, f2,..., fn )

Another way to view this (for 2 classes): 

€ 

d( f1, f2,..., fn ) =
P(c1 | f1, f2,..., fn )
P(c2 | f1, f2,..., fn )

Given d how would we classify? 

NB as a linear classifier 

To classify: 

€ 

classify( f1, f2,..., fn ) =
c1

c2

if d >1
if d <1
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d( f1, f2,..., fn ) =
P(c1 | f1, f2,..., fn )
P(c2 | f1, f2,..., fn )

€ 

classify( f1, f2,..., fn ) =
c1

c2

if log d > 0
if log d < 0
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We can take the log: 

NB as a linear classifier 

€ 

logd( f1, f2,..., fn ) = log P(c1 | f1, f2,..., fn )
P(c2 | f1, f2,..., fn )

€ 

= log P( f1 | c1)P( f2 | c1)...P( fn | c1)p(c1)
P( f1 | c2)P( f2 | c2)...P( fn | c2)p(c2)

€ 

= logP(c1) − logP(c2) + logP( f i | c1) − logP( f i | c2)
i=1

n

∑

NB as a linear classifier 

€ 

= logP(c1) − logP(c2) + logP( f i | c1) − logP( f i | c2)
i=1

n

∑

€ 

= logP(c1) − logP(c2) + fi(logP( f i | c1) − logP( f i | c2))
i=1

n

∑

binary  
features 

weight for that 
dimension 

€ 

0 = w1 f1 + w2 f2 + ...+ wnxn + wn+1

wn+1 
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Lots of linear classifiers 
Many common text classifiers are linear classifiers 

– Naïve Bayes 
– Perceptron 
– Rocchio 
– Logistic regression 
– Support vector machines (with linear kernel) 
– Linear regression 

Despite this similarity, noticeable performance difference 
 

How might algorithms differ? 

Which Hyperplane? 

lots of possible solutions 

Which Hyperplane? 

lots of possible solutions 

Which examples are important? 
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Which examples are important? Which examples are important? 

Dealing with noise 

linearly separable? 

A nonlinear problem 

A linear classifier 
like Naïve Bayes 
does badly on this 
task 

k-NN will do very 
well (assuming 
enough training 
data) 

20 
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Linear classifiers: Which Hyperplane? 

Lots of possible solutions for a,b,c 

Support Vector Machine (SVM) finds an 
optimal solution 

– Maximizes the distance between 
the hyperplane and the “difficult 
points” close to decision boundary 

This line 
represents the 

decision 
boundary: 

ax + by - c = 0 

22 

Another intuition 
Think of it as trying to place a wide separator between 
the points. 
 
Will constrain the possible options 
 

Support Vector Machine (SVM) 
Support vectors 

Maximize 
margin 

SVMs maximize the margin around 
the separating hyperplane 

•  aka large margin classifiers 
 
specified by a subset of training 
samples, the support vectors 
 
Posed as a quadratic programming 
problem 
 
Seen by many as the most successful 
current text classification method*  

*but other discriminative methods 
often perform very similarly 

Margin maximization 
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Margin maximization Measuring the margin 

The support vectors define the hyperplane 
and the margin 

Measuring the margin 

How do we classify points given the hyperplane? 

Measuring the margin 

wT 

b 

f(xi) =  sign(wTxi + b) 
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Measuring the margin 

ρ 

How can we calculate margin? 

wT 

b 

Measuring the margin 

Minimum of the distance from the hyperplane 
to any point(s) (specifically the support vectors) 

ρ 

wT 

b 

Basic SVM setp 

ρ 

wT 

b 

Find the largest margin hyperplane where: 
-  all the positive examples are on one side 
-  all the negative examples are on the other side 

Measuring the margin 

ρ 

r 

x 

x′ 

Want to calculate r 
x’ – x is perpendicular to hyperplane  

w/|w| is the unit vector in direction of w 

x’ = x – rw/|w| 

x’ satisfies wTx’+b = 0 because it’s on wT 

So wT(x –rw/|w|) + b = 0 

wTx –wTrw/|w| + b = 0 
wTx –wTrw|w|/|w||w| + b = 0 

wTx –wTrw|w|/wTw + b = 0 |w
| =

 sq
rt(

w
T w) 

wTx –r|w| + b = 0 

w
xw byr

T +
=

wT 

b 
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Linear SVM Mathematically 
The linearly separable case 

Assume that all data is at least distance 1 from the 
hyperplane, then the following two constraints follow for 
a training set {(xi ,yi)} 

wTxi + b ≥ 1    if yi = 1 
 

wTxi + b ≤ -1   if yi = -1 

positive examples on 
one side 

negative examples on 
the other side 

Measuring the margin 

ρ 

r 

x 

x′ 

wT 

b 

wTxi + b ≥ 1    if yi = 1 
wTxi + b ≤ -1   if yi = -1 

The support vectors are those 
that define the hyperplane.  
They’re the “boderline” cases 
where this weight is exactly 1. 
Then, since each example’s 
distance from the hyperplane 
is 
 
 
 
The margin is: 

w
xw byr

T +
=

w
2

=ρ

Linear SVMs Mathematically 
(cont.) 

Then we can formulate the quadratic optimization 
problem:  

Find w and b such that 
 is maximized; 
 
for all {(xi , yi)} 
wTxi + b ≥ 1 if yi=1;   wTxi + b ≤ -1   if yi = -1 

w
2

=ρ maximize margin 

make sure points are on correct size 

Linear SVMs Mathematically 
(cont.) 

A better formulation (min ||w|| = max 1/ ||w|| ):  

Find w and b such that 
Φ(w) = wTw  is minimized;  
and for all {(xi ,yi)}:    yi (wTxi + b) ≥ 1 
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Solving the Optimization 
Problem 

 
This is a quadratic function subject to linear 
constraints 
 
Quadratic optimization problems are well-known 
 
Many ways exist for solving these 

Find w and b such that 
Φ(w) = wTw  is minimized;  

and for all {(xi ,yi)}:  yi (wTxi + b) ≥ 1 

An LP example 
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Where is the feasibility region? 

An LP example 
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An LP example 
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An LP example 
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to maximize, move as far in this 
direction as the constraints allow  

Soft Margin Classification   

What about this problem? 

Soft Margin Classification   

Like to learn something like this, but 
our constraints won’t allow it L 
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Soft Margin Classification   

Slack variables: allow it to make some 
mistakes, but penalize it 

Soft Margin Classification 
Mathematically 

Find w and b such that 
Φ(w) =½ wTw  is minimized and for all {(xi ,yi)} 
yi (wTxi + b) ≥ 1 

Find w and b such that 
Φ(w) =½ wTw + CΣξi     is minimized and for all {(xi ,yi)} 
yi (wTxi + b) ≥ 1- ξi     and    ξi ≥ 0 for all i 

Old: 

With slack variables: 

- allows us to make a mistake, but penalizes it 
- C trades off noisiness vs. error 

Linear SVMs:  Summary 

Classifier is a separating hyperplane 
–  large margin classifier: learn a hyperplane that 

maximally separates the examples 

Most “important” training points are support 
vectors; they define the hyperplane 

Quadratic optimization algorithm 

Non-linear SVMs 
Datasets that are linearly separable (with some 
noise) work out great: 

 
But what are we going to do if the dataset is just 
too hard?  

0 x 

0 x 
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Non-linear SVMs 

How about … mapping data to a higher-dimensional space: 

0 

x2 

x 

0 x 

Non-linear SVMs 

How about … mapping data to a higher-dimensional space: 

0 

x2 

x 

0 x 

51 

Non-linear SVMs:  Feature spaces 

General idea:   map original feature space to higher-
dimensional feature space where the training set is 
separable: 

Φ:  x → 
φ(x) 

The “Kernel Trick” 
The linear classifier relies on an inner product 
between vectors K(xi,xj)=xi

Txj 

 
If every datapoint is mapped into high-dimensional 
space via some transformation Φ:  x → φ(x), the inner 
product becomes: 

K(xi,xj)= φ(xi) 
Tφ(xj) 

 
A kernel function is some function that corresponds to 
an inner product in some expanded feature space. 
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Kernels 
Why use kernels? 

–  Make non-separable problem separable. 
–  Map data into better representational space 

 
Common kernels 

–  Linear 
–  Polynomial K(x,z) = (1+xTz)d 

•  Gives feature conjunctions 

–  Radial basis function (infinite dimensional space) 

 

 

Demo 

http://svm.dcs.rhbnc.ac.uk/pagesnew/GPat.shtml 

SVM implementations 

SVMLight (C) 
 
SVMLib (Java) 

Switching gears: weighted examples 

Are all examples equally important? 



15 

Weak classifiers 
Sometimes, it can be intractable (or very  
expensive) to train a full classifier 
 
However, we can get some information using simple 
classifiers 
 
A weak classifier is any classifier that gets more than 
half of the examples right 

–  not that hard to do 
–  a weak classifier does better than random 

•  Ideas? 

Decision stumps 

A decision stump is a common weak classifier 
 
Decision stump: 1 level decision tree: 

featurei 

class 1 class 2 

Ensemble methods 
If one classifier is good, why not 10 classifiers, or 100? 
 
Ensemble methods combine different classifiers in a 
reasonable way to get at a better solution 

–  similar to how we combined heuristic functions 

 
Boosting is one approach that combines multiple weak 
classifiers 

Boosting 

E1 E2 E3 E4 E5 Examples: 

Weights: 

Start with equal weighted examples 
 
Learn a weak classifier 
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Boosting 

E1 E2 E3 E4 E5 Examples: 

Weights: 

Weak1 

It will do well on some of our training 
examples and not so well on others 

Boosting 

E1 E2 E3 E4 E5 Examples: 

Weights: 

Weak1 

We’d like to reweight the examples and learn 
another weak classifier.  Ideas? 

Boosting 

E1 E2 E3 E4 E5 Examples: 

Weights: 

Weak1 

Downweight ones that we’re doing well, and 
upweight those that we’re having problems with 

Boosting 

E1 E2 E3 E4 E5 Examples: 

Weights: 

Weak1 

Learn a new classifier based on the new set of 
weighted examples 
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Boosting 

E1 E2 E3 E4 E5 Examples: 

Weights: 

Weak1 

Learn a new classifier based on the new set of 
weighted examples 

Weak2 

Boosting 

E1 E2 E3 E4 E5 Examples: 

Weights: 

Weak1 

Reweight again: 

Weak2 

Boosting 
Continue this for some number of “rounds” 

–  at each round we learn a new weak classifier 
–  and then reweight the examples again 

 
Our final classifier is a weighted combination of these weak 
classifiers 
 
Adaboost is one common version of boosting 

–  specifies how to reweight and how to combine learned classifiers 
–  nice theoretical guarantees 
–  tends not to have problems with overfitting 

http://cseweb.ucsd.edu/classes/fa01/cse291/AdaBoost.pdf 

Classification: concluding thoughts 

Lots of classifiers out there 
–  SVMs work very well on broad range of settings 

 
Many challenges still: 

–  coming up with good features 
–  preprocessing 
–  picking the right kernel 
–  learning hyper parameters (e.g. C for SVMs) 

 
Still a ways from computers “learning” in the traditional 
sense 


