
1

David Kauchak, CS311, Spring 2013

Linear Classifiers/SVMs

Admin

•  Midterm exam posted
•  Assignment 4 due Friday by 6pm
•  No office hours tomorrow

Math
Machine learning often involves a lot of math

–  some aspects of AI also involve some familiarity

Don’t let this be daunting

– Many of you have taken more math than me
– Gets better over time
– Often, just have to not be intimidated

Learning

environment
agent

?

sensors

actuators

As an agent interacts with the world, it should
learn about it’s environment

2

Quick review

•  Three classifiers
– Naïve Bayes
–  k-nearest neighbor
–  decision tree
–  good and bad?

•  Bias vs. variance
–  a measure of the model
–  where do NB, k-nn and decision trees fit on the bias/

variance spectrum?

Separation by Hyperplanes
A strong high-bias assumption is linear separability:

–  in 2 dimensions, can separate classes by a line
–  in higher dimensions, need hyperplanes

Hyperplanes

A hyperplane is line/plane in a high dimensional
space

What defines a hyperplane?
What defines a line?

Hyperplanes
A hyperplane in an n-dimensional space is
defined by n+1 values

€

0 = w1 f1 + w2 f2 + ...+ wn fn + wn+1

e.g. a line

or a plane

€

0 = w1 f1 + w2 f2 + w3

€

0 = w1 f1 + w2 f2 + w3 f3 + w4

f(x) = ax+b

f(x,y) = ax+by + c

3

NB as a linear classifier
To classify:

€

argmaxC P(C | f1, f2,..., fn)

Another way to view this (for 2 classes):

€

d(f1, f2,..., fn) =
P(c1 | f1, f2,..., fn)
P(c2 | f1, f2,..., fn)

Given d how would we classify?

NB as a linear classifier

To classify:

€

classify(f1, f2,..., fn) =
c1

c2

if d >1
if d <1

"

$

%
&
' €

d(f1, f2,..., fn) =
P(c1 | f1, f2,..., fn)
P(c2 | f1, f2,..., fn)

€

classify(f1, f2,..., fn) =
c1

c2

if log d > 0
if log d < 0

"

$

%
&
'

We can take the log:

NB as a linear classifier

€

logd(f1, f2,..., fn) = log P(c1 | f1, f2,..., fn)
P(c2 | f1, f2,..., fn)

€

= log P(f1 | c1)P(f2 | c1)...P(fn | c1)p(c1)
P(f1 | c2)P(f2 | c2)...P(fn | c2)p(c2)

€

= logP(c1) − logP(c2) + logP(f i | c1) − logP(f i | c2)
i=1

n

∑

NB as a linear classifier

€

= logP(c1) − logP(c2) + logP(f i | c1) − logP(f i | c2)
i=1

n

∑

€

= logP(c1) − logP(c2) + fi(logP(f i | c1) − logP(f i | c2))
i=1

n

∑

binary
features

weight for that
dimension

€

0 = w1 f1 + w2 f2 + ...+ wnxn + wn+1

wn+1

4

Lots of linear classifiers
Many common text classifiers are linear classifiers

– Naïve Bayes
– Perceptron
– Rocchio
– Logistic regression
– Support vector machines (with linear kernel)
– Linear regression

Despite this similarity, noticeable performance difference

How might algorithms differ?

Which Hyperplane?

lots of possible solutions

Which Hyperplane?

lots of possible solutions

Which examples are important?

5

Which examples are important? Which examples are important?

Dealing with noise

linearly separable?

A nonlinear problem

A linear classifier
like Naïve Bayes
does badly on this
task

k-NN will do very
well (assuming
enough training
data)

20

6

21

Linear classifiers: Which Hyperplane?

Lots of possible solutions for a,b,c

Support Vector Machine (SVM) finds an
optimal solution

– Maximizes the distance between
the hyperplane and the “difficult
points” close to decision boundary

This line
represents the

decision
boundary:

ax + by - c = 0

22

Another intuition
Think of it as trying to place a wide separator between
the points.

Will constrain the possible options

Support Vector Machine (SVM)
Support vectors

Maximize
margin

SVMs maximize the margin around
the separating hyperplane

•  aka large margin classifiers

specified by a subset of training
samples, the support vectors

Posed as a quadratic programming
problem

Seen by many as the most successful
current text classification method*

*but other discriminative methods
often perform very similarly

Margin maximization

7

Margin maximization Measuring the margin

The support vectors define the hyperplane
and the margin

Measuring the margin

How do we classify points given the hyperplane?

Measuring the margin

wT

b

f(xi) = sign(wTxi + b)

8

Measuring the margin

ρ

How can we calculate margin?

wT

b

Measuring the margin

Minimum of the distance from the hyperplane
to any point(s) (specifically the support vectors)

ρ

wT

b

Basic SVM setp

ρ

wT

b

Find the largest margin hyperplane where:
-  all the positive examples are on one side
-  all the negative examples are on the other side

Measuring the margin

ρ

r

x

x′

Want to calculate r
x’ – x is perpendicular to hyperplane

w/|w| is the unit vector in direction of w

x’ = x – rw/|w|

x’ satisfies wTx’+b = 0 because it’s on wT

So wT(x –rw/|w|) + b = 0

wTx –wTrw/|w| + b = 0
wTx –wTrw|w|/|w||w| + b = 0

wTx –wTrw|w|/wTw + b = 0 |w
| =

 sq
rt(

w
T w)

wTx –r|w| + b = 0

w
xw byr

T +
=

wT

b

9

Linear SVM Mathematically
The linearly separable case

Assume that all data is at least distance 1 from the
hyperplane, then the following two constraints follow for
a training set {(xi ,yi)}

wTxi + b ≥ 1 if yi = 1

wTxi + b ≤ -1 if yi = -1

positive examples on
one side

negative examples on
the other side

Measuring the margin

ρ

r

x

x′

wT

b

wTxi + b ≥ 1 if yi = 1
wTxi + b ≤ -1 if yi = -1

The support vectors are those
that define the hyperplane.
They’re the “boderline” cases
where this weight is exactly 1.
Then, since each example’s
distance from the hyperplane
is

The margin is:

w
xw byr

T +
=

w
2

=ρ

Linear SVMs Mathematically
(cont.)

Then we can formulate the quadratic optimization
problem:

Find w and b such that
 is maximized;

for all {(xi , yi)}
wTxi + b ≥ 1 if yi=1; wTxi + b ≤ -1 if yi = -1

w
2

=ρ maximize margin

make sure points are on correct size

Linear SVMs Mathematically
(cont.)

A better formulation (min ||w|| = max 1/ ||w||):

Find w and b such that
Φ(w) = wTw is minimized;
and for all {(xi ,yi)}: yi (wTxi + b) ≥ 1

10

Solving the Optimization
Problem

This is a quadratic function subject to linear
constraints

Quadratic optimization problems are well-known

Many ways exist for solving these

Find w and b such that
Φ(w) = wTw is minimized;

and for all {(xi ,yi)}: yi (wTxi + b) ≥ 1

An LP example

0,
400
300
200

21

21

2

1

≥

≤+

≤

≤

xx
xx

x
x

21 6 maximize xx +
subject to

2x

1x100 200 300

100

200

300

400

400

An LP example

0,
400
300
200

21

21

2

1

≥

≤+

≤

≤

xx
xx

x
x

21 6 maximize xx +
subject to

2x

1x100 200 300

100

200

300

400

400

01 ≥x

02 ≥x 2001 ≤x

3002 ≤x

40021 ≤+ xx

Where is the feasibility region?

An LP example

0,
400
300
200

21

21

2

1

≥

≤+

≤

≤

xx
xx

x
x

21 6 maximize xx +
subject to

2x

1x100 200 300

100

200

300

400

400

01 ≥x

02 ≥x 2001 ≤x

3002 ≤x

40021 ≤+ xx

11

An LP example

0,
400
300
200

21

21

2

1

≥

≤+

≤

≤

xx
xx

x
x

21 6 maximize xx +
subject to

2x

1x100 200 300

100

200

300

400

400

cxx =+ 21 6
c = 2100

c = 1800

c = 1500

c = 1200

c = 900

c = 600

An LP example

0,
400
300
200

21

21

2

1

≥

≤+

≤

≤

xx
xx

x
x

21 6 maximize xx +
subject to

2x

1x100 200 300

100

200

300

400

400

cxx =+ 21 6
c = 2100

c = 1800

c = 1500

c = 1200

c = 900

c = 600

to maximize, move as far in this
direction as the constraints allow

Soft Margin Classification

What about this problem?

Soft Margin Classification

Like to learn something like this, but
our constraints won’t allow it L

12

Soft Margin Classification

Slack variables: allow it to make some
mistakes, but penalize it

Soft Margin Classification
Mathematically

Find w and b such that
Φ(w) =½ wTw is minimized and for all {(xi ,yi)}
yi (wTxi + b) ≥ 1

Find w and b such that
Φ(w) =½ wTw + CΣξi is minimized and for all {(xi ,yi)}
yi (wTxi + b) ≥ 1- ξi and ξi ≥ 0 for all i

Old:

With slack variables:

- allows us to make a mistake, but penalizes it
- C trades off noisiness vs. error

Linear SVMs: Summary

Classifier is a separating hyperplane
–  large margin classifier: learn a hyperplane that

maximally separates the examples

Most “important” training points are support
vectors; they define the hyperplane

Quadratic optimization algorithm

Non-linear SVMs
Datasets that are linearly separable (with some
noise) work out great:

But what are we going to do if the dataset is just
too hard?

0 x

0 x

13

Non-linear SVMs

How about … mapping data to a higher-dimensional space:

0

x2

x

0 x

Non-linear SVMs

How about … mapping data to a higher-dimensional space:

0

x2

x

0 x

51

Non-linear SVMs: Feature spaces

General idea: map original feature space to higher-
dimensional feature space where the training set is
separable:

Φ: x →
φ(x)

The “Kernel Trick”
The linear classifier relies on an inner product
between vectors K(xi,xj)=xi

Txj

If every datapoint is mapped into high-dimensional
space via some transformation Φ: x → φ(x), the inner
product becomes:

K(xi,xj)= φ(xi)
Tφ(xj)

A kernel function is some function that corresponds to
an inner product in some expanded feature space.

14

Kernels
Why use kernels?

–  Make non-separable problem separable.
–  Map data into better representational space

Common kernels

–  Linear
–  Polynomial K(x,z) = (1+xTz)d

•  Gives feature conjunctions

–  Radial basis function (infinite dimensional space)

Demo

http://svm.dcs.rhbnc.ac.uk/pagesnew/GPat.shtml

SVM implementations

SVMLight (C)

SVMLib (Java)

Switching gears: weighted examples

Are all examples equally important?

15

Weak classifiers
Sometimes, it can be intractable (or very
expensive) to train a full classifier

However, we can get some information using simple
classifiers

A weak classifier is any classifier that gets more than
half of the examples right

–  not that hard to do
–  a weak classifier does better than random

•  Ideas?

Decision stumps

A decision stump is a common weak classifier

Decision stump: 1 level decision tree:

featurei

class 1 class 2

Ensemble methods
If one classifier is good, why not 10 classifiers, or 100?

Ensemble methods combine different classifiers in a
reasonable way to get at a better solution

–  similar to how we combined heuristic functions

Boosting is one approach that combines multiple weak
classifiers

Boosting

E1 E2 E3 E4 E5 Examples:

Weights:

Start with equal weighted examples

Learn a weak classifier

16

Boosting

E1 E2 E3 E4 E5 Examples:

Weights:

Weak1

It will do well on some of our training
examples and not so well on others

Boosting

E1 E2 E3 E4 E5 Examples:

Weights:

Weak1

We’d like to reweight the examples and learn
another weak classifier. Ideas?

Boosting

E1 E2 E3 E4 E5 Examples:

Weights:

Weak1

Downweight ones that we’re doing well, and
upweight those that we’re having problems with

Boosting

E1 E2 E3 E4 E5 Examples:

Weights:

Weak1

Learn a new classifier based on the new set of
weighted examples

17

Boosting

E1 E2 E3 E4 E5 Examples:

Weights:

Weak1

Learn a new classifier based on the new set of
weighted examples

Weak2

Boosting

E1 E2 E3 E4 E5 Examples:

Weights:

Weak1

Reweight again:

Weak2

Boosting
Continue this for some number of “rounds”

–  at each round we learn a new weak classifier
–  and then reweight the examples again

Our final classifier is a weighted combination of these weak
classifiers

Adaboost is one common version of boosting

–  specifies how to reweight and how to combine learned classifiers
–  nice theoretical guarantees
–  tends not to have problems with overfitting

http://cseweb.ucsd.edu/classes/fa01/cse291/AdaBoost.pdf

Classification: concluding thoughts

Lots of classifiers out there
–  SVMs work very well on broad range of settings

Many challenges still:

–  coming up with good features
–  preprocessing
–  picking the right kernel
–  learning hyper parameters (e.g. C for SVMs)

Still a ways from computers “learning” in the traditional
sense

