CS311 - Assignment 5
Due: Friday, April 12 by 6pm

LOGICAL FALLACY COMICS This is most often seen when people play
PRESENTS: 11 b games of chance. They'11l assume that, say,
- W1 e zince they'wve had such bad Tuck with rolls
"THE GAMELER'S FALLACY" corrected in of the dice recently, they are somehow

the short ' u I
The gambler's fallacy is term! ™~ (due® for a good rolly
when one assumes that a
deviation ~ However, in most cases
from what \\~thﬁngs are independent.

occurs in The result of the
the Tong revious roll has no
term... earing on the
current roll! GE:?
/’_———a,_q
And just how s this a whatever!

Togical fallacy, T-Rex?
It sounds more Tike
basic probability!

(23 2004 Ryan Narth s, QWantz. com

http://wuw.empiricalzeal.com/2012/12/21/what-does-randomness-look-1like/

For our last assignment we will are going to be coding up the k-means algorithm. I've given you
a fair amount of code to deal with the nitty-gritty details so that you can focus on the algorithm
itself and on evaluating different variations.

You may, and I encourage you to, work in pairs on this assignment. As always, read through the
entire document before starting.

1 Starter Code

A starter is available for this assignment that has both code and data at:

/home/dkauchak/PUBLIC/cs311/assignb/

The starter code contains four different files:

- kmeans.py: This is skeleton code for a KMeans clusterer. You will be filling in the details
of some of the methods and may also be adding your own. Do NOT remove or change the
headers for any of the methods defined in this file.

- kmeansGUI.py: This is a graphical interface for visualizing your KMeans algorithm for 2-D
clustering problems. You will not make any changes to this code, however, the code will not
work until you have filled in all the details for your KMeans class.

- datapoint.py: This file contains classes for storing the data that will be clustered by your
k-means algorithm. The data is stored as a sparse vector using a dictionary as a mapping
from the feature/dimension to the value of that feature. You can create new data points
manually by passing in a dictionary to the constructor and the class supports most of the
basic operations you’ll need, e.g.

>>> from datapoint import *

>>> pointl = DataPoint(dict(x=1, y=2))
>>> print pointil

{’y’: 2, ’x’: 1}

>>> point2 = DataPoint(dict(y=2,x=1))
>>> print point2

{2y 2, ’x’: 1}

>>> pointl == point2

True

>>> point3 = DataPoint(dict(x=1, y=2, z=15))
>>> print point3

{y>: 2, ’x’: 1, ’z’: 15}

>>> pointl != point3

True

Look at the code for the DataPoint class and make sure you understand at a high-level what
functionality is available to you. In particular, you’ll likely need to us the following methods:

e get_val

e add_data_counts

e divide_by_constant
e cosine_distance

e ecuclidean

Also in this file is a WordDataPoint class which you’ll use to cluster documents. It extends
the DataPoint class, so it has the same functionality and can be used anywhere a DataPoint
is expected, however, it allows you to instantiate a data point from a list of words:

>>> words = "I like to eat bananas with more bananas".split()
>>> words

[’T’, ’like’, ’to’, ’eat’, ’bananas’, ’with’, ’more’, ’bananas’]
>>> word_point = WordDataPoint(words)

>>> print word_point

Counts: {’bananas’: 2, ’I’: 1, ’to’: 1, ’more’: 1, ’with’: 1, ’eat’: 1, ’like’:

>>> word_point.get_val("bananas")
2

Finally, at the end of this file is the function gen random data that’s useful for generating
random data for testing your clustering algorithm on (more on this later).

- DataReader.py: The same DataReader file/class that you used for the NB classification
assignment. We will use this to read similar text data for clustering. See the NB handout for
details on how to use this class.

2 Getting to know your DataPoint

To get you comfortable with the DataPoint class, the first thing you need to do is fill in the
euclidean method which will compute the Euclidean distance between this point and another
point. For example:

>>> pointl = DataPoint(dict(x=2, y=3))

>>> point2 = DataPoint(dict(x=4, y=6))

>>> point3 = DataPoint(dict(x=2, y=3, z=2))

>>> pointl.euclidean(point2)

some number---work through the example by hand
>>> point2.euclidean(point1)

the same number :)

>> pointl.euclidean(point3)

some number that is NOT zero

When you think you have it working, work through a few examples by hand and make sure this is
working correctly. One of the keys to good programming (and to saving yourself a lot of headaches
and time) is to develop incrementally, checking and testing your code as you go.

3 k-means

Now you should have a fully functional DataPoint class. If you haven’t done so yet, make sure you
look through all of the methods in that class that are available to you.

The next step is to implement your k-means clusterer. Specifically, read through the documentation
then fill in the details for the following methods in kmeans. py:

1}

- __init__

- cluster

- assign to_centers

- recalculate_centers
- get_clusters

- get_centers

This shouldn’t be a ton of coding, but make sure you understand what each of the functions above
are supposed to be doing.

You’ll need to keep track of two key things in the KMeans class: 1) the clusters and 2) the cluster
centers. For the cluster centers, you can just use DataPoints since this will allow you to do
distance calculations, etc. For the clusters, I recommend that your represent each cluster as a list
of DataPoints and then you can store all of the clusters in a single list. You may do it another
way, however, representing your data this way will make your life easier since this is the format
that is expected to be returned from the get_clusters method.

I’'d recommend getting a barebones clustering algorithm working using Euclidean distance and
a fixed number of iterations then go back and add handling of cosine distance and checking for
convergence.

For the first pass of this you should pick random points to initialize your cluster centers.

4 Visualizing k-means

Assuming you’ve implemented everything in the KMeans class, you should now be able to construct
a new KMeans object using some data and then cluster it using the cluster method. Try out some
simple examples and see if you get the results.

To help you with understanding how k-means works (and for debugging your implementation), i’ve
also put together a GUI that will allow you to cluster points in two dimensions.

Try out a simple example:

from datapoint import *
from kmeans import *
from kmeansGUI import *

data = []
data.append(DataPoint (dict(x=1, y=1)))

data.append(DataPoint (dict(x=1, y=2)))
data.append(DataPoint (dict (x=2, y=1)))

data.append(DataPoint (dict (x=2, y=2)))
data.append(DataPoint (dict(x=5, y=5)))
data.append(DataPoint (dict (x=5, y=6)))
data.append(DataPoint (dict(x=6, y=5)))
data.append(DataPoint (dict (x=6, y=6)))

clusterer = KMeans(data, 2)

KMeansGUI(data, clusterer)
If you put this in a file and run this it should pop open a window that looks something like:

800 K-means clustering

RecalculateCenters Onelteration AssignToCenters
4

In the upper left are the 8 points in our data set and on the bottom are three buttons. There are two
ways of running you k-means algorithm from the GUI. If you want to see each of the steps happen
individually, you can alternate between clicking AssignToCenters and RecalculateCenters. This
can be useful when trying to make sure your algorithm does the right thing since it allows you two
run each step individually.

If you just want to see the algorithm work, then you can use the OneIteration button, which will
do one iteration of the k-means algorithm (i.e. assigning to cluster centers and then recalculating
centers).

This example isn’t too interesting since often the clusters are right after the first iteration. To try
out a more interesting example, I've provided a function in the DataPoint.py file that will generate

random data around some number of randomly chosen cluster centers. For example, to generate
100 points around 4 cluster centers and then display it in the GUI:

from datapoint import *

from kmeans import *

from kmeansGUI import *

data = gen_random_data(4, 100)

clusterer = KMeans(data, 3)

KMeansGUI(data, clusterer)

for example you might see the following (note the points are random, so you’ll most likely see
something different):

800 K-means clustering
.
®e

s o "

s . .'.-

A . ke
. L] L] -
. ge . -.h .,

. e : .
” o

L]

L] .. .

.

L]
[]
L] . LY
-
"R
L]
RecalculateCenters Onelteration AssignToCenters
e

If T click on the “AssignToCenters” button, the points get assigned to centers and will be colored
appropriately:

8 00 K-means clustering

o
%
o o g°
=)
Vs
«*" ° o Eﬁ?ao
° C o oo
. ge coco%a o,
L] o t? o
Lo
] L]
@ @ @
s °*
L]
L]
L ' %
I
LN N]
L]
| RecalculateCenters | | Onelteration | | AssignToCenters |
4

If T now click on the “RecalculateCenters” button the centers will be calculated and shown:

e 00 K-means clustering
[+]
%
e oo g°
g ° 00%0
=]
PR ° o EB?]O
® - . =]
° '. BOB L-IF
L] o g o
Lo
¥} L]
K.
]
L]
L]
L] . LY
I
LN W]
L]
| RecalculateCenters | | Onelteration | | AssignToCenters |
4

I could continue to alternate pushing these buttons to continue k-means, or I can just press the

“Onelteration” button to do a full iteration:

8 00 K-means clustering
=]
®a
e o "
g ° o%c
oo’ . @
~ L] o oo
- g Oooﬂgﬁ g
° e F ®
e
L] ..
(]
. .
L]
L]
L] ' [
s ®
o
L]
L]
| RecalculateCenters | | Onelteration | | AssignToCenters |
£
Eventually, if I keep pressing the button the solution converges:
800 K-means clustering
-]
®s
o6 o °
g ° 2e
a®" - g =
B L] e '™
- [...ﬂh 0,
® e 8 F
- e
L] .. i..
(]
. ‘
L]
L]
L] . [y
s ®
L L
L]
| RecalculateCenters | | Onelteration | | AssignToCenters |
A

5 Clustering Documents

Besides just clustering numerical points, we can also cluster “documents”. For example, you can
cluster the following sentences:

from datapoint import *
from kmeans import *

data = []

data.append(WordDataPoint ("I like bananas".split()))
data.append(WordDataPoint ("bananas like me".split()))
data.append(WordDataPoint ("you like bananas".split()))
data.append(WordDataPoint ("I hate apples".split()))
data.append(WordDataPoint ("apples hate me".split()))
data.append(WordDataPoint ("you hate apples".split()))

generally use the cosine distance for words
clusterer = KMeans(data, 2, KMeans.COSINE)
clusterer.cluster()

clusters = clusterer.get_clusters()

print out the clusters
for cluster in clusters:
print "-" x 25

for point in cluster:
print point

Most of the time, you should see a hate/apples cluster and a like/bananas cluster (although not

always, so try it a couple of times if it doesn’t work).

Once you're sure that your clustering algorithm is working, you’re now ready to cluster some real
data. I pre-processed the movie review data to be more amenable for clustering. In particular,

1. I removed punctuation and any words that weren’t alphanumeric.

2. I removed very frequent words that are not content bearing (e.g. “a” or “the”).

3. I then counted all of the word occurrences and only kept the top 5% most frequent words.
For clustering, rare words don’t help us much since they don’t help much with similarity and
they can make the clustering computationally expensive.

I've put this revised data set in a file called movies.condensed.data and put it in the data
directory within the assignment starter.

This file has the same format as the old movies file and so we can use the DataReader class to read

in a the data set and then cluster it:

data = []

reader = DataReader("movies.condensed.data")

for label, tokens in reader:

pass the label to the WordData constructor to keep track of it for later use
data.append(WordDataPoint (tokens, label=label))

k=five clusters

clusterer = KMeans(data, 5, KMeans.COSINE)

clusters = clusterer.cluster()

for cluster in clusters:
print "-" *x 25

for point in cluster:

print point.get_label() + ": " + str(point)

There are 13,591 documents in this data set, so it may take a couple of minutes to cluster, however,
it shouldn’t take much longer than that if you’ve implemented everything correctly.

6 Evaluation

If all is working well, you should have seen 5 clusters printed out with the data points in each and
their positive/negative label. But, how good are we doing?

Create a file called eval.py and add to it code to calculate two evaluation measures:

e Calculate the average purity of the clustering of the documents (we’ll just do purity for this
assignment since there are only two classes). To calculate the average purity calculate the
purity of each class and then average it across classes.

e Calculate the weighted average purity. Calculate the purity for each clutter and then average
the clusters, but weight the average based on how many points are in the cluster. So if cluster
A has purity 0.5 with 10 points and cluster B has purity 0.8 with 20 points, the average purity
would be 0.65, but the weighted average purity would be 0.70.

7 Experimentation

Now let’s experiment! Create a file called evaluation results (it can be a .txt, .doc or .pdf)
and experiment with you k-means algorithm and some variations on the algorithm. I'd like you to

10

treat this like a mini-research paper where you analyze some variations, presents the results in a
reasonable format and then interpret the results. This will be good practice for you final project.

Your paper must include:
- Baseline evaluation scores on the movie data set for both evaluation metrics using the basic
k-means algorithm.

- Implement at least one other approach for initializing k-means and provide evaluation results
on the movies data set.

- Experiment with at least one other k-mean component/variation and present results. For
example:

— Examine how the quality of the clustering improves for each iteration of the algorithm
running.

— Randomly restart many times and compare the results (e.g. worst, best and average).

— Be creative :)

- Your writeup must include at least 2 figures/table, should be < 2 pages long and for every
experiment that you present results you should include a short paragraph introducing the
experiment (i.e. what you did) and then analyzing/interpreting the results.

- If you want, feel free to experiment with other data sets. I'm happy to help you preprocess

them if that would be useful.

The writeup will be a non-trivial portion of your grade, so make sure you spend some time working
on it. See what you can figure out about how the algorithm performs!

When you’re done

When you're all done, follow the directions on the course web page for submitting your work. Make
sure that your code compiles, that your files are named as specified and that all your functions
have the same name and number of parameters.

If you worked with a partner, put both people’s last names on the submitted directory, but only
submit one copy.

What to submit

e datapoint.py: Your revised file with the euclidean method implemented.
e kmeans.py: Your k-means implementation.
e eval.py: You evaluation metric implementation.

e evaluation_results: Your experimentation writeup.

11

Commenting and code style

Your code should be commented appropriately (though you don’t need to go overboard). The most
important things:

e Your name (or names) and the assignment number should be at the top of each file

e Each class and method should have a short “docstring”

e If anything is complicated, put a short note in there to help the graders out if there are any

issues.

There are many possible ways to approach this problem, which makes code style and comments
very important here so that the grader and I can understand what you did. For this reason, you
will lose points for poorly commented or poorly organized code.

12

