
3/5/13

1

Amortized Analysis
and Heaps Intro

David Kauchak
cs302

Spring 2013

Admin
l  Homeworks 4 and 5 back soon
l  How are the homeworks going?

Extensible array

Sequential locations in memory in linear order

Elements are accessed via index

l  Access of particular indices is O(1)

Say we want to implement an array that supports add (i.e.
addToBack)

l  ArrayList or Vector in Java
l  arrays in Python, perl, Ruby, …

How can we do it?

Extensible array
Idea 1: Each time we call add, create a new array one
element large, copy the data over and add the element

Running time: Θ(n)

3/5/13

2

Extensible array

Idea 2: Allocate extra, unused memory and save room to
add elements

For example: new ArrayList(2)

allocated for
actual array

extra space for
calls to add

Extensible array

Idea 2: Allocate extra, unused memory and save room to
add elements

Adding an item:

Running time: Θ(1) Problems?

Extensible array

Idea 2: Allocate extra, unused memory and save room to
add elements

How much extra space do we allocate?

Too little, and we might run out (e.g. add 15 items)

Too much, and we waste lots of memory Ideas?

Extensible array

Idea 3: Allocate some extra memory and when it fills up,
allocate some more and copy
For example: new ArrayList(2)

…

3/5/13

3

Extensible array

Idea 3: Allocate some extra memory and when it fills up,
allocate some more and copy
For example: new ArrayList(2)

…

Running time: Θ(n)

Extensible array

Idea 3: Allocate some extra memory and when it fills up,
allocate some more and copy
For example: new ArrayList(2)

…

How much extra memory
should we allocate?

Extensible array
…

Challenge: most of the calls to add will be O(1)

How else might we talk about runtime?

What is the average running time of add in the
worst case?

l  Note this is different than the average-case running
time

Amortized analysis
What does “amortize” mean?

3/5/13

4

Amortized analysis
There are many situations where the worst case running
time is bad

However, if we average the operations over n operations,
the average time is more reasonable

This is called amortized analysis

l  This is different than average-case running time, which requires
probabilistic reasoning about input

l  The worse case running time doesn’t change

Amortized analysis
Many approaches for calculating the amortized analysis

l  we’ll just look at the counting/aggregate method
l  book has others

aggregate method

l  figure out the big-O runtime for a sequence of n calls
l  divide by n to get the average run-time per call

Amortized analysis
What is the aggregate cost of n calls?

Let’s assume it’s O(1) and then prove it

Base case: size 1 array, add an element: O(1)

Inductive case: assume n-1 calls are O(1), show that
nth call is O(1)

Two cases:
-  array need to be doubled
-  array does need to be doubled

Amortized analysis
What is the aggregate cost of n calls?
Case 1: doesn’t need doubling

l  just add the element into the current array
l  O(1)

Case 2: need doubling

l  O(n) operation to copy all the data over
l  Overall cost of n-insertions:

l  n-1*O(1) + O(n) = O(n)
l  Amortized cost: O(n)/n = O(1)

We amortize (spread) the cost of the O(n) operation over all
of the previous O(1) operations

3/5/13

5

Amortized analysis
Another way we could have done the analysis would be to
calculate the total cost over n operations

double_cost(n) ≤ 1+ 2+ 4+8+16+...+ n = 2n

total_cost(n) = basic_cost(n) + double_cost(n)

basic_cost(n) = O(n)

total_cost(n) = O(n) amortized O(1)

Assume we start with an empty array with 1 location. What
is the cost to insert n items?

Amortized analysis vs.
worse case
What is the worse case of add?

l  Still O(n)
l  If you have an application that needs it to be O(1), this

implementation will not work!

amortized analysis give you the cost of n
operations (i.e. average cost) not the cost of any
individual operation

Extensible arrays
What if instead of doubling the array, we add
instead increase the array by a fixed amount (call it
k) each time

Is the amortized run-time still O(1)?

l  No!
l  Why?

Amortized analysis
Consider the cost of n insertions for some constant k

double_cost(n) =k+2k+3k+4k+5k+...+n

total_cost(n) = basic_cost(n) + double_cost(n)

basic_cost(n) = O(n)

 = ki
i=1

n/k

∑

 =k i
i=1

n/k

∑

 =k

n
k
n
k
+1

!

"
#

$

%
&

2
=O(n2)

3/5/13

6

Amortized analysis
Consider the cost of n insertions for some constant k

total_cost(n) = O(n)+O(n2)

= O(n2)

amortized O(n)!

Another set data structure
We want to support fast lookup and insertion (i.e. faster
than linear)

Arrays can easily made to be fast for one or the other
l  fast search: keep list sorted

l  O(n) insert
l  O(log n) search

l  fast insert: extensible array
l  O(1) insert (amortized)
l  O(n) search

Another set data structure
Idea: store data in a collection of arrays

l  array i has size 2i

l  an array is either full or empty (never partially full)
l  each array is stored in sorted order
l  no relationship between arrays

Another set data structure
Which arrays are full and empty are based on the number of elements

l  specifically, binary representation of the number of elements
l  4 items = 100 = A2-full, A1-empty, A0-empty
l  11 items = 1011 = A3-full, A2-empty, A1-full, A0-full

Lookup: binary search through each array

l  Worse case runtime?

A0: [5]
A1: [4, 8]
A2: empty
A3: [2, 6, 9, 12, 13, 16, 20, 25]

3/5/13

7

Another set data structure

Lookup: binary search through each array

Worse case: all arrays are full

l  number of arrays = number of digits = log n
l  binary search cost for each array = O(log n)
l  O(log n log n)

A0: [5]
A1: [4, 8]
A2: empty
A3: [2, 6, 9, 12, 13, 16, 20, 25]

Another set data structure
Insert(A, item)

l  starting at i = 0
l  current = [item]
l  as long as the level i is full

l  merge current with Ai using merge procedure
l  store to current
l  Ai = empty
l  i++

l  Ai = current

Insert 5
A0: empty

Insert
l  starting at i = 0
l  current = [item]
l  as long as the level i is full

l  merge current with Ai using merge
procedure

l  store to current
l  Ai = empty
l  i++

l  Ai = current

Insert 5
A0: [5]

Insert
l  starting at i = 0
l  current = [item]
l  as long as the level i is full

l  merge current with Ai using merge
procedure

l  store to current
l  Ai = empty
l  i++

l  Ai = current

3/5/13

8

Insert 6
A0: [5]

Insert
l  starting at i = 0
l  current = [item]
l  as long as the level i is full

l  merge current with Ai using merge
procedure

l  store to current
l  Ai = empty
l  i++

l  Ai = current

Insert 6
A0: empty
A1: [5, 6]

Insert
l  starting at i = 0
l  current = [item]
l  as long as the level i is full

l  merge current with Ai using merge
procedure

l  store to current
l  Ai = empty
l  i++

l  Ai = current

Insert 12
A0: empty
A1: [5, 6]

Insert
l  starting at i = 0
l  current = [item]
l  as long as the level i is full

l  merge current with Ai using merge
procedure

l  store to current
l  Ai = empty
l  i++

l  Ai = current

Insert 12
A0: [12]
A1: [5, 6]

Insert
l  starting at i = 0
l  current = [item]
l  as long as the level i is full

l  merge current with Ai using merge
procedure

l  store to current
l  Ai = empty
l  i++

l  Ai = current

3/5/13

9

Insert 4
A0: [12]
A1: [5, 6]

Insert
l  starting at i = 0
l  current = [item]
l  as long as the level i is full

l  merge current with Ai using merge
procedure

l  store to current
l  Ai = empty
l  i++

l  Ai = current

Insert 4
A0: empty
A1: empty
A2: [4, 5, 6, 12]

Insert
l  starting at i = 0
l  current = [item]
l  as long as the level i is full

l  merge current with Ai using merge
procedure

l  store to current
l  Ai = empty
l  i++

l  Ai = current

Insert 23
A0: empty
A1: empty
A2: [4, 5, 6, 12]

Insert
l  starting at i = 0
l  current = [item]
l  as long as the level i is full

l  merge current with Ai using merge
procedure

l  store to current
l  Ai = empty
l  i++

l  Ai = current

Insert 23
A0: [23]
A1: empty
A2: [4, 5, 6, 12]

Insert
l  starting at i = 0
l  current = [item]
l  as long as the level i is full

l  merge current with Ai using merge
procedure

l  store to current
l  Ai = empty
l  i++

l  Ai = current

3/5/13

10

Another set data structure
Insert

l  starting at i = 0
l  current = [item]
l  as long as the level i is full

l  merge current with Ai using merge procedure
l  store to current
l  Ai = empty
l  i++

l  Ai = current

running time?

Insert running time
Worse case

l  merge at each level
l  2 + 4 + 8 + … + n/2 + n = O(n)

There are many insertions that won’t fall into this
worse case

What is the amortized worse case for insertion?

insert: amortized analysis

Consider inserting n numbers
l  how many times will A0 be empty?
l  how many times will we need to merge with A0?
l  how many times will we need to merge with A1?
l  how many times will we need to merge with A2?
l  …
l  how many times will we need to merge with Alog n?

insert: amortized analysis

Consider inserting n numbers
l  how many times will A0 be empty? n/2
l  how many times will we need to merge with A0? n/2
l  how many times will we need to merge with A1? n/4
l  how many times will we need to merge with A2? n/8
l  …
l  how many times will we need to merge with Alog n? 1

cost of each of these steps?

times

3/5/13

11

insert: amortized analysis

l  Consider inserting n numbers
l  how many times will A0 be empty? n/2 O(1)
l  how many times will we need to merge with A0? n/2 2
l  how many times will we need to merge with A1? n/4 4
l  how many times will we need to merge with A2? n/8 8
l  …
l  how many times will we need to merge with Alog n? 1 n

total cost:

times cost

insert: amortized analysis

l  Consider inserting n numbers
l  how many times will A0 be empty? n/2 O(1)
l  how many times will we need to merge with A0? n/2 2
l  how many times will we need to merge with A1? n/4 4
l  how many times will we need to merge with A2? n/8 8
l  …
l  how many times will we need to merge with Alog n? 1 n

total cost: log n levels * O(n) each level
 O(n log n) cost for n inserts
 O(log n) amortized cost!

times cost

Binary heap
A binary tree where the value of a parent is greater
than or equal to the value of its children

Additional restriction: all levels of the tree are
complete except the last

Max heap vs. min heap

Binary heap - operations
Maximum(S) - return the largest element in the set

ExtractMax(S) – Return and remove the largest element in
the set

Insert(S, val) – insert val into the set

IncreaseElement(S, x, val) – increase the value of element
x to val

BuildHeap(A) – build a heap from an array of elements

3/5/13

12

Binary heap

How can we represent a heap?

Binary heap - references

16

14 10

8

2 4 1

7 9 3

parent ≥ child

complete tree

level does not
indicate size

all nodes in
a heap are
themselves
heaps

Binary heap - array
Binary heap - array

16 14 10 8 7 9 3 2 4 1

1 2 3 4 5 6 7 8 9 10

3/5/13

13

Binary heap - array

16 14 10 8 7 9 3 2 4 1

1 2 3 4 5 6 7 8 9 10

Left child of A[3]?

Binary heap - array

16 14 10 8 7 9 3 2 4 1

1 2 3 4 5 6 7 8 9 10

Left child of A[3]?

2*3 = 6

Binary heap - array

16 14 10 8 7 9 3 2 4 1

1 2 3 4 5 6 7 8 9 10

Parent of A[8]?

Binary heap - array

16 14 10 8 7 9 3 2 4 1

1 2 3 4 5 6 7 8 9 10

Parent of A[8]?

⎣ ⎦ 42/8 =

3/5/13

14

Binary heap - array

16 14 10 8 7 9 3 2 4 1

1 2 3 4 5 6 7 8 9 10

16

14 10

8

2 4 1

7 9 3

Identify the valid heaps

8

[15, 12, 3, 11, 10, 2, 1, 7, 8]

[20, 18, 10, 17, 16, 15, 9, 14, 13]

16

10 15

9 3

