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Admin 
l  Homeworks 4 and 5 back soon 
l  How are the homeworks going? 

Extensible array 

Sequential locations in memory in linear order 
 
Elements are accessed via index 

l  Access of particular indices is O(1) 

 
Say we want to implement an array that supports add (i.e. 
addToBack) 

l  ArrayList or Vector in Java 
l  arrays in Python, perl, Ruby, … 

 
How can we do it? 

Extensible array 
Idea 1: Each time we call add, create a new array one 
element large, copy the data over and add the element 

Running time: Θ(n) 
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Extensible array 

Idea 2: Allocate extra, unused memory and save room to 
add elements 
 
For example:  new ArrayList(2) 

allocated for 
actual array 

extra space for 
calls to add 

Extensible array 

Idea 2: Allocate extra, unused memory and save room to 
add elements 
 
Adding an item: 

Running time: Θ(1) Problems? 

Extensible array 

Idea 2: Allocate extra, unused memory and save room to 
add elements 
 
How much extra space do we allocate? 

Too little, and we might run out (e.g. add 15 items) 

Too much, and we waste lots of memory Ideas? 

Extensible array 

Idea 3: Allocate some extra memory and when it fills up, 
allocate some more and copy 
For example:  new ArrayList(2) 

… 
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Extensible array 

Idea 3: Allocate some extra memory and when it fills up, 
allocate some more and copy 
For example:  new ArrayList(2) 

… 

Running time: Θ(n) 

Extensible array 

Idea 3: Allocate some extra memory and when it fills up, 
allocate some more and copy 
For example:  new ArrayList(2) 

… 

How much extra memory 
should we allocate? 

Extensible array 
… 

Challenge: most of the calls to add will be O(1) 
 
How else might we talk about runtime? 
 
What is the average running time of add in the 
worst case? 

l  Note this is different than the average-case running 
time 

Amortized analysis 
What does “amortize” mean? 
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Amortized analysis 
There are many situations where the worst case running 
time is bad 
 
However, if we average the operations over n operations, 
the average time is more reasonable 
 
This is called amortized analysis 

l  This is different than average-case running time, which requires 
probabilistic reasoning about input 

l  The worse case running time doesn’t change 

Amortized analysis 
Many approaches for calculating the amortized analysis 

l  we’ll just look at the counting/aggregate method 
l  book has others 

 
aggregate method 

l  figure out the big-O runtime for a sequence of n calls 
l  divide by n to get the average run-time per call 

Amortized analysis 
What is the aggregate cost of n calls? 

Let’s assume it’s O(1) and then prove it 

Base case: size 1 array, add an element: O(1) 

Inductive case: assume n-1 calls are O(1), show that 
nth call is O(1) 

Two cases: 
-  array need to be doubled 
-  array does need to be doubled 

Amortized analysis 
What is the aggregate cost of n calls? 
Case 1: doesn’t need doubling 

l   just add the element into the current array 
l  O(1) 

 
Case 2: need doubling 

l  O(n) operation to copy all the data over 
l  Overall cost of n-insertions: 

l  n-1*O(1) + O(n) = O(n) 
l  Amortized cost: O(n)/n = O(1) 

We amortize (spread) the cost of the O(n) operation over all 
of the previous O(1) operations 
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Amortized analysis 
Another way we could have done the analysis would be to 
calculate the total cost over n operations 

double_cost(n) ≤  1+ 2+ 4+8+16+...+ n = 2n

total_cost(n) = basic_cost(n) + double_cost(n)

basic_cost(n) = O(n)

total_cost(n) = O(n) amortized O(1) 

Assume we start with an empty array with 1 location.  What 
is the cost to insert n items? 

Amortized analysis vs.  
worse case 
What is the worse case of add? 

l  Still O(n) 
l  If you have an application that needs it to be O(1), this 

implementation will not work! 
 
amortized analysis give you the cost of n 
operations (i.e. average cost) not the cost of any 
individual operation 

Extensible arrays 
What if instead of doubling the array, we add 
instead increase the array by a fixed amount (call it 
k) each time 
 
Is the amortized run-time still O(1)? 

l  No! 
l  Why? 

Amortized analysis 
Consider the cost of n insertions for some constant k  

double_cost(n) =k+2k+3k+4k+5k+...+n

total_cost(n) = basic_cost(n) + double_cost(n)

basic_cost(n) = O(n)
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Amortized analysis 
Consider the cost of n insertions for some constant k  

total_cost(n) = O(n)+O(n2 )

= O(n2 )

amortized O(n)! 

Another set data structure 
We want to support fast lookup and insertion (i.e. faster 
than linear) 

Arrays can easily made to be fast for one or the other 
l  fast search: keep list sorted 

l  O(n) insert 
l  O(log n) search 

l  fast insert: extensible array 
l  O(1) insert (amortized) 
l  O(n) search 

Another set data structure 
Idea: store data in a collection of arrays 

l  array i has size 2i 

l  an array is either full or empty (never partially full) 
l  each array is stored in sorted order 
l  no relationship between arrays 

Another set data structure 
Which arrays are full and empty are based on the number of elements 

l  specifically, binary representation of the number of elements 
l  4 items = 100 = A2-full, A1-empty, A0-empty 
l  11 items = 1011 = A3-full, A2-empty, A1-full, A0-full 

 
Lookup: binary search through each array 

l  Worse case runtime? 

A0: [5] 
A1: [4, 8] 
A2: empty 
A3: [2, 6, 9, 12, 13, 16, 20, 25] 
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Another set data structure 

Lookup: binary search through each array 
 
Worse case: all arrays are full 

l  number of arrays = number of digits = log n 
l  binary search cost for each array = O(log n) 
l  O(log n log n)  

A0: [5] 
A1: [4, 8] 
A2: empty 
A3: [2, 6, 9, 12, 13, 16, 20, 25] 

Another set data structure 
Insert(A, item) 

l  starting at i = 0 
l  current = [item] 
l  as long as the level i is full 

l  merge current with Ai using merge procedure 
l  store to current 
l  Ai = empty 
l  i++ 

l   Ai = current 

Insert 5 
A0: empty 

Insert 
l  starting at i = 0 
l  current = [item] 
l  as long as the level i is full 

l  merge current with Ai using merge 
procedure 

l  store to current 
l  Ai = empty 
l  i++ 

l   Ai = current 

Insert 5 
A0: [5] 

Insert 
l  starting at i = 0 
l  current = [item] 
l  as long as the level i is full 

l  merge current with Ai using merge 
procedure 

l  store to current 
l  Ai = empty 
l  i++ 

l   Ai = current 
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Insert 6 
A0: [5] 

Insert 
l  starting at i = 0 
l  current = [item] 
l  as long as the level i is full 

l  merge current with Ai using merge 
procedure 

l  store to current 
l  Ai = empty 
l  i++ 

l   Ai = current 

Insert 6 
A0: empty 
A1: [5, 6] 
 

Insert 
l  starting at i = 0 
l  current = [item] 
l  as long as the level i is full 

l  merge current with Ai using merge 
procedure 

l  store to current 
l  Ai = empty 
l  i++ 

l   Ai = current 

Insert 12 
A0: empty 
A1: [5, 6] 
 

Insert 
l  starting at i = 0 
l  current = [item] 
l  as long as the level i is full 

l  merge current with Ai using merge 
procedure 

l  store to current 
l  Ai = empty 
l  i++ 

l   Ai = current 

Insert 12 
A0: [12] 
A1: [5, 6] 
 

Insert 
l  starting at i = 0 
l  current = [item] 
l  as long as the level i is full 

l  merge current with Ai using merge 
procedure 

l  store to current 
l  Ai = empty 
l  i++ 

l   Ai = current 
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Insert 4 
A0: [12] 
A1: [5, 6] 
 

Insert 
l  starting at i = 0 
l  current = [item] 
l  as long as the level i is full 

l  merge current with Ai using merge 
procedure 

l  store to current 
l  Ai = empty 
l  i++ 

l   Ai = current 

Insert 4 
A0: empty 
A1: empty 
A2: [4, 5, 6, 12] 

Insert 
l  starting at i = 0 
l  current = [item] 
l  as long as the level i is full 

l  merge current with Ai using merge 
procedure 

l  store to current 
l  Ai = empty 
l  i++ 

l   Ai = current 

Insert 23 
A0: empty 
A1: empty 
A2: [4, 5, 6, 12] 

Insert 
l  starting at i = 0 
l  current = [item] 
l  as long as the level i is full 

l  merge current with Ai using merge 
procedure 

l  store to current 
l  Ai = empty 
l  i++ 

l   Ai = current 

Insert 23 
A0: [23] 
A1: empty 
A2: [4, 5, 6, 12] 

Insert 
l  starting at i = 0 
l  current = [item] 
l  as long as the level i is full 

l  merge current with Ai using merge 
procedure 

l  store to current 
l  Ai = empty 
l  i++ 

l   Ai = current 
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Another set data structure 
Insert 

l  starting at i = 0 
l  current = [item] 
l  as long as the level i is full 

l  merge current with Ai using merge procedure 
l  store to current 
l  Ai = empty 
l  i++ 

l   Ai = current 

running time? 

Insert running time 
Worse case 

l  merge at each level 
l  2 + 4 + 8 + … + n/2 + n = O(n) 

There are many insertions that won’t fall into this 
worse case 

What is the amortized worse case for insertion? 

insert: amortized analysis 

Consider inserting n numbers 
l  how many times will A0 be empty? 
l  how many times will we need to merge with A0? 
l  how many times will we need to merge with A1? 
l  how many times will we need to merge with A2? 
l  … 
l  how many times will we need to merge with Alog n? 

insert: amortized analysis 

Consider inserting n numbers 
l  how many times will A0 be empty?   n/2 
l  how many times will we need to merge with A0?  n/2 
l  how many times will we need to merge with A1?  n/4 
l  how many times will we need to merge with A2?  n/8 
l  … 
l  how many times will we need to merge with Alog n? 1 

cost of each of these steps? 

times 
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insert: amortized analysis 

l  Consider inserting n numbers 
l  how many times will A0 be empty?   n/2  O(1) 
l  how many times will we need to merge with A0?  n/2  2 
l  how many times will we need to merge with A1?  n/4  4 
l  how many times will we need to merge with A2?  n/8  8 
l  … 
l  how many times will we need to merge with Alog n? 1  n 

total cost: 

times cost 

insert: amortized analysis 

l  Consider inserting n numbers 
l  how many times will A0 be empty?   n/2  O(1) 
l  how many times will we need to merge with A0?  n/2  2 
l  how many times will we need to merge with A1?  n/4  4 
l  how many times will we need to merge with A2?  n/8  8 
l  … 
l  how many times will we need to merge with Alog n? 1  n 

total cost:  log n levels * O(n) each level 
  O(n log n) cost for n inserts 
  O(log n) amortized cost! 

times cost 

Binary heap 
A binary tree where the value of a parent is greater 
than or equal to the value of its children 
 
Additional restriction: all levels of the tree are 
complete except the last 
 
Max heap vs. min heap 

Binary heap - operations 
Maximum(S) - return the largest element in the set 

ExtractMax(S) – Return and remove the largest element in 
the set 

Insert(S, val) – insert val into the set 

IncreaseElement(S, x, val) – increase the value of element 
x to val 

BuildHeap(A) – build a heap from an array of elements 
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Binary heap 

How can we represent a heap? 

Binary heap - references 

16 

14 10 

8 

2 4 1 

7 9 3 

parent ≥ child  

complete tree  

level does not 
indicate size 

all nodes in 
a heap are 
themselves 
heaps 

Binary heap - array 
Binary heap - array 

16  14  10   8    7    9    3    2    4    1 

1   2    3    4    5    6    7    8    9    10 
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Binary heap - array 

16  14  10   8    7    9    3    2    4    1 

1   2    3    4    5    6    7    8    9    10 

Left child of A[3]? 

Binary heap - array 

16  14  10   8    7    9    3    2    4    1 

1   2    3    4    5    6    7    8    9    10 

Left child of A[3]? 

2*3 = 6 

Binary heap - array 

16  14  10   8    7    9    3    2    4    1 

1   2    3    4    5    6    7    8    9    10 

Parent of A[8]? 

Binary heap - array 

16  14  10   8    7    9    3    2    4    1 

1   2    3    4    5    6    7    8    9    10 

Parent of A[8]? 

⎣ ⎦ 42/8 =
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Binary heap - array 

16  14  10   8    7    9    3    2    4    1 

1   2    3    4    5    6    7    8    9    10 

16 

14 10 

8 

2 4 1 

7 9 3 

Identify the valid heaps 

8 

[15, 12, 3, 11, 10, 2, 1, 7, 8] 

[20, 18, 10, 17, 16, 15, 9, 14, 13] 

16 

10 15 

9 3 


