
5/9/13	

1	

+

Review
CS302
Spring 2013
David Kauchak

+
Admin

n  Final
n  posted on the course web page on Monday

n  due Sunday at 11:59pm

n  time-boxed (3-4 hours)

n  You may use:

n  your book

n  your notes

n  the class notes

n  ONLY these things

n  Do NOT discuss it with anyone until after Sunday at 11:59pm

+
Test taking advice
n  Read the questions carefully!

n  Don’t spend too much time on any problem
n  if you get stuck, move on and come back

n  When you finish answering a question, reread the question
and make sure that you answered everything the question
asked

n  Think about how you might be able to reuse an existing
algorithm/approach

n  Show your work (can’t give you partial credit if I can’ t figure
out what went wrong)

n  Don’t rely on the book/notes for conceptual things
n  Do rely on the book for a run-time you may not remember, etc.

+
Where we’ve been

n  21 assignments
n  67 problems!

n  23 classes
n  Number of slides?

n  1537!!!

n  Hung out for: 27 hours

5/9/13	

2	

+
How far have we come…

n  Describe the algorithm for a depth first search traversal

n  Write a function f(a, b) which takes two character string
arguments and returns a string containing only the characters
found in both strings in the order of a. Write a version which is
order N-squared and one which is order N.

n  You're given an array containing both positive and negative
integers and required to find the sub-array with the largest sum
in O(n) time. Write a routine in C for the above.

n  Reverse a linked list

n  Insert in a sorted linked list

n  Write a function to find the depth of a binary tree

+
High-level approaches

Algorithm tools
n  Divide and conquer

n  assume that we have a solver, but that can only solve sub-
problems

n  define the current problem with respect to smaller problems

n  Key: sub-problems should be non-overlapping

n  Dynamic programming

n  Same as above

n  Key difference: sub-problems are overlapping

n  Once you have this recursive relationship:

n  figure out the data structure to store sub-problem solutions

n  work from bottom up (or memoize)

+
High-level approaches

Algorithm tools cont.
n  Greedy

n  Same idea: most greedy problems can be solve using dynamic
programming (but generally slower)

n  Key difference: Can decide between overlapping sub-problems
without having to calculate them (i.e. we can make a local
decision)

n  Flow

n  Matching problems

n  Numerical maximization/minimization problems

+
Data structures

A data structure
n  Stores data

n  Supports access to/questions about data efficiently

n  the different bias towards different actions

n  No single best data structure

Fast access/lookup?
n  If keys are sequential: array

n  If keys are non-sequential or non-numerical: hashtable

n  Guaranteed run-time: balanced binary search tree

n  Lots and lots of data: B-tree

5/9/13	

3	

+
Data structures

Min/max?
n  heap

Fast insert/delete at positions?
n  linked list

Others
n  stacks/queues

n  extensible data structures

n  disjoint sets

+
Graphs

Graph types
n  directed/undirected
n  weighted/unweighted
n  trees, DAGs
n  cyclic
n  connected

Algorithms
n  connectedness
n  contains a cycle
n  traversal

n  dfs
n  bfs

+
Graphs

Graph algorithms cont.
n  minimum spanning trees

n  shortest paths

n  single source

n  all pairs

n  topological sort

n  flow

+
Other topics…

n  NP-completeness
n  proving NP-completeness

n  reductions

