
CS302 - Assignment 6
Due: Tuesday, Mar. 5 at the beginning of class

Hand-in method: paper

http://www.angelfire.com/wa/zzaran/calvin.html

For this assignment you must use latex to generate your work.

1. [7 points] Problem 9.3-9 (pg. 223) from the book. Average case linear is fine. You don’t
need to write full pseudocode, but clearly describe your solution and then you must show
that your answer is correct.

- Hint 1: Try drawing out a few examples and calculate the values for different configu-
rations.

- Hint 2: To show that your answer is correct, show that the pipeline length would increase
if you move it either up or down from your chosen location (proof by contradiction).

2. [7 points] Linked Lists

For each of the four types of lists in the following table, what is the asymptotic worst-case
running time for each set operation listed? A sorted linked list is one in which the data is
stored in sorted order. State any assumptions.

- Search: determine if k occurs in the list

- Insert: insert item k into the linked list

- Delete: given a reference to node n, delete node n from the linked list

- Predecessor: given a reference to node n, find the previous value (in sorted order) of
the value associated with node n

- Successor: given a reference to node n, find the next value (in sorted order) of the
value associated with node n

1



unsorted, sorted, unsorted, sorted,
singly linked singly linked doubly linked doubly linked

Search(k)

Insert(S, k)

Delete(S, n)

Successor(S, n)

Predecessor(S, n)

Minimum(S)

Maximum(S)

3. [5 points] Better than binary search?

Binary search can determine if an element exists in a sorted array in O(log n) time. Prove
that any algorithm that can only use comparisons (i.e. >,<,=, ...) must take Ω(log n) steps,
in particular when the element is not there (thereby also showing that binary search is asymp-
totically optimal).

4. [14 points] Halfsies

In some situations, there is not a natural ordering to the data but we can check equality (e.g.
images). Given an array of elements A, we would like to determine if there exists a value that
occurs in more than half of the entries of the array. If so, return that value, otherwise, return
null. Assume you can only check equality of elements in the array which takes time O(1).

Below are the beginnings of two divide and conquer approaches that attempt to solve this
problem. Write pseudocode for each approach, argue that they are correct and state the
running times.

(a) Split the array in half and recurse.

(b) Arbitrarily pair up the elements. If they’re the same, keep one of the items. If they’re
different, discard both items. Repeat.

2


