
2/16/12	

1	

REGULAR EXPRESSIONS
David Kauchak
CS312 – Spring 2012

Regular expressions

¨  Regular expressions are a very powerful tool to do
string matching and processing

¨  Allows you to do things like:
¤ Tell me if a string starts with a lowercase letter, then is

followed by 2 numbers and ends with “ing” or “ion”
¤ Replace all occurrences of one or more spaces with a

single space
¤ Split up a string based on whitespace or periods or

commas or …
¤ Give me all parts of the string where a digit is

proceeded by a letter and then the ‘#’ sign

Regular expressions: literals

¨  We can put any string in a regular expression
¤ /test/

n matches any string that has “test” in it
¤ /this class/

n matches any string that has “this class” in it
¤ /Test/

n  case sensitive: matches any string that has “Test” in it

Regular expressions: character classes

¨  A set of characters to match:
¤ put in brackets: []
¤  [abc] matches a single character a or b or c

¨  For example:
¤ /[Tt]est/

n matches any string with “Test” or “test” in it

¨  Can use – to represent ranges
n  [a-z] is equivalent to [abcdefghijklmnopqrstuvwxyz]
n  [A-D] is equivalent to [ABCD]
n  [0-9] is equivalent to [0123456789]

2/16/12	

2	

Regular expressions: character classes

¨  For example:
¤ /[0-9][0-9][0-9][0-9]/

n matches any four digits, e.g. a year

¨  Can also specify a set NOT to match
¤ ^ means all character EXCEPT those specified
¤  [^a] all characters except ‘a’
¤  [^0-9] all characters except numbers
¤  [^A-Z] not an upper case letter

Regular expressions: character classes

¨  Meta-characters
¤ \w - word character (a-zA-Z_0-9)
¤ \W - non word-character (i.e. everything else)
¤ \d - digit (0-9)
¤ \s - whitespace character (space, tab, endline, …)
¤ \S - non-whitespace
¤  . - matches any character

For example

¨  /19\d\d/
¤ would match any 4 digits starting with 19

¨  /\s/
¤ matches anything with a whitespace (space, tab, etc)

¨  /\S/ or /[^\s]/
¤ matches anything with at least one non-space character

Regular expressions:
beginning and end

¨  ^ marks the beginning of the line
¨  $ marks the end of the line

¨  /test/
¤  test can occur anywhere

¨  /^test/
¤ must start with test

¨  /test$/
¤ must end with test

¨  /^test$/
¤ must be exactly test

2/16/12	

3	

Regular expressions: repetition

¨  * matches zero or more of the preceding
¤  /^ba*d$/

n  matches any string with:
n  bd
n  bad
n  baad
n  baaad

¤  /^A.*A$/
n  matches any string starts and ends with A

¨  + matches one or more of the preceding
¤  /^ba+d$/

n  matches any string with
n  bad
n  baad
n  baaad
n  baaaad

Regular expressions: repetition

¨  ? zero or 1 occurrence of the preceding
¤ /fights?/

n matches any string with “fight” or “fights” in it

¨  {n,m} matches n to m inclusive
¤ /ba{3,4}d/
¤ matches any string with

n baaad
n baaaad

Regular expressions: repetition revisited

¨  What if we wanted to match:
¤ This is very interesting
¤ This is very very interesting
¤ This is very very very interesting

¨  Would /This is very+ interesting/ work?
¤ No… + only corresponds to the ‘y’
¤ /This is (very)+interesting/

Regular expressions: disjunction

¨  | has the lowest precedence and can be used
¤ /cats|dogs/

n matches:
n  cats
n  dogs

n does NOT match:
n  catsogs

¤ /^I like (cats|dogs)$/
n matches:

n  I like cats
n  I like dogs

2/16/12	

4	

Some examples

¨  All strings that start with a capital letter
¨  IP addresses

¤ 255.255.122.122

¨  Matching a decimal number
¨  All strings that end in ing
¨  All strings that end in ing or ed
¨  All strings that begin and end with the same

character

Some examples

¨  All strings that start with a capital letter
¤  /^[A-Z]/

¨  IP addresses
¤  /\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}/

¨  Matching a decimal number
¤  /[-+]?[0-9]*\.?[0-9]+/

¨  All strings that end in ing
¤  /ing$/

¨  All strings that end in ing or ed
¤  /(ing|ed)$/

Regular expressions: memory

¨  All strings that begin and end with the same
character

¨  Requires us to know what we matched already
¨  ()

¤ used for precedence
¤ also records a matched grouping, which can be

referenced later

¨  /^(.).*\1$/
¤ all strings that begin and end with the same character

Regular expression: memory

¨  /She likes (\w+) and he likes \1/

¨  We can use multiple matches
¤  /She likes (\w+) and (\w+) and he also likes \1 and \2/

2/16/12	

5	

Regular expression search

¨  <string> =~ /regex/
¨  <string_var> =~ /regex/

¤  returns the index of the first occurrence if there is a match
¤  nil if it does not match

>> "this is a test" =~ /is/
=> 2
>> "this is a test" =~ /blah/
=> nil
>> "this is a test" =~ /^.*(is).*\1/
=> 0
>> x = "this is a test"
=> "this is a test"
>> x =~ /^.*(is).*\1/
=> 0

Regular expressions: substitution

¨  We can also substitute matches
¤  sub – returns a new string with the substitution. only

substitutes first occurrence
¤  sub! – ALSO modifies the current string
¤ gsub – substitutes ALL occurrences of the pattern, but

does not modify
¤ gsub! – ALSO modifies current string

Regular expression subsitution

>> x = "test"
=> "test"
>> x.sub(/t/, "e")
=> "eest"
>> x
=> "test”
>> x.sub!(/t/, "e")
=> "eest"
>> x
=> "eest"
>> x = "test"
=> "test"
>> x.gsub(/t/, "e")
=> "eese"

