
CS 312 - Assignment 3

Unit Testing: Where failure is always an option

Due 11:59pm on Monday, March 5

http://xkcd.com/224/

For this assignment you will be writing unit tests for the functions that you

wrote for the last assignment. It is generally good practice to write the

unit test before you write the code that it tests, however, to give you some

practice writing tests, we’re going to do it in the opposite order this time.

For this assignment you should also use Git to track your code as you go.

Setup an initial repository when you start and commit occassionally as you

work. I don’t expect to see tons of commits, but I do want to see some. See

the When you’re done... section to see how to submit this work.

After you have written your tests, you will be working with a partner to

create a combined set of tests. Even though this will happen after your write

your own tests, find a partner now. If you can’t find a partner, e-mail me

before Friday and I will find you a group.

1



Before starting, read through the entire handout to make sure you

understand what is required of you.

1 Unit tests

This first part should be done individually.

Write at least one unit test per function for the functions listed below from

Assignment 2. Separate your tests into three separate files corresponding

for testing the functions from the three different sections in files named:

test blocks101.rb, test blocks201.rb and test blocks301.rb respec-

tively. Inside these files you should use require to import the file to be

tested and the required files should be named assign2 1.rb, assign2 2.rb

and linked list.rb respectively.

Make sure you follow this specification exactly!

As you’re writing unit tests keep the following in mind:

• Make sure to test corner cases, such as being called with an empty

array/hash.

• When appropriate, make your tests more robust by using iteration to

generate larger data sets.

• You should be writing your tests based on the specification (that is

the handout for Assignment 2).

• If the specification assumes some format about the data (i.e an array

of numbers) you do not need to (and should not) test input that does

not meet this requirement.

• For some of the functions it may make sense to write multiples tests.

• For testing similar function (e.g. invert sign and invert sign!

setup your tests to reuse code).

• You can run your tests on your Assignment 2 submission as you go.

Bocks 101 functions to test: all except square hash values and longest words

2



Blocks 201 functions to test: all except print sorted

Blocks 301 functions to test: test both functions

You will be partially graded based on how good your tests are at catching

code with issues. In addition, I will likely run your unit tests over all of the

Assignment 2 submissions from last time and you may also get graded on

how many issues you catch on other people’s assignments.

2 Sweet Test Suite

Once you have your three different files, create a test suite called ts assignment2.rb

that incorporates all of your three tests above.

3 Adjoining Suites

Once both you and your partner have finished writing your unit tests do the

steps in this section

1. Run your test on your partners program and pipe the results to a file

with your first name and last name on it followed by “ test partner name”

(or copy and paste the results into a .txt file). For example:

$ ruby -I lib test/ts_assignment2.rb > DavidKauchak_test_Bobby_Z.txt

2. Sit down together and look at the results of the tests. Then look at the

unit test code for each partner. In a file called partner evaluations.txt

jointly come up with a score between 1 and 10 for each of your unit

tests based on the test results and the thoroughness of the tests. In-

clude one or two sentences justifying your scores. For example, my

partner and I might submit the following:

David Kauchak: 9

Bobby Z: 2

Dave’s tests caught mistakes in both his code and Bobby’s

3



code. In reviewing code, they were robust and handled

almost all of the cases we thought of.

Some of Bobby’s tests failed erroneously and in reviewing

the code, many of them didn’t test key functionality.

3. Finally, combine your two sets of tests into a final set of test files and

test suite that you will submit jointly as a partnered group. Note

that you should not simply copy and paste the tests into a single file.

Instead, you should go through the tests one by one and if two tests

cover basically the same issues, pick the best of the two (or merge the

two into a single test).

Style/Comments

Comments

For unit tests, you can use comments sparingly. You should include com-

ments at the top of the file with BOTH partners names and a short descrip-

tion of the tests. If there are any complicated parts in the code, include a

short comment.

Style

• You code should be succinct and follow the general ruby conventions,

including variable, method and class naming schemes.

• Unit test names should be very descriptive of what they are test-

ing. In the case of unit tests, it’s better to err on the side of too

long/descriptive.

When you’re done...

Make sure you’ve followed the specifications above. You should only submit

one assignment per partnered pair. To submit, follow the instructions on

the course web page.

Your submission should include the following:

4



• A single copy of your tests (test blocks101.rb, test blocks201.rb,

test blocks301.rb) and your test suite file (ts assignment2.rb).

These files should represent your groups combined tests and should be

in a folder called test.

• The output from the individual unit test runs. There should be one

for each partner (e.g. DavidKauchak test Bobby Z.txt and

Bobby Z test DavidKauchak.txt).

• Your partnered evaluation file (partner evaluations.txt).

• Each partner should also submit a Git log file showing their progress

as they constructed their individual tests. For example:

$ git log > DavidKauchak.git.txt

Grading

You will be graded based on:

- How well you followed the specification above.

- The effectiveness of your tests (both on artificially created examples

as well as examples from the class).

- Your partnered evaluation.

- Your use of Git.

- The style and quality of your code/tests.

5


