
CS 312 - Assignment 2

Around the block with Ruby blocks

Due 11:59pm on Monday, February 27

http://www.bonkersworld.net/images/2011.11.15 life of a swe.png

1

1 Blocks 101

Write the functions below in a file called assign2 1.rb. Make sure to follow

the instructions exactly and use the specified names. You may NOT use

a for loop for any of the functions (but consider using the methods we

talked about on Tuesday including each, each with index, each char and

sort by). You will be graded on both correctness as well as style and brevity.

• Write a function hash value sum that takes a hash whose values are

numbers as a parameter and returns the sum of the values in the hash.

• Write a function square hash values that takes a hash whose values

are numbers as a parameter and returns a new hash that has the same

keys as the parameter but the values have been squared. You should

use the each method.

• Write a function every other sum that takes an array of numbers as

a parameter and returns the sum of every other number in the array

starting with the first entry.

>> every_other_sum([1, 2, 3, 4, 5, 6])

9

• Write a function called get character counts that takes a string as

a parameter and returns a hash with the keys as characters and the

value being the number of times that character occurred in the string.

Upper- and lower-case characters should be treated the same. (Hint:

consider using Hash.new to create the hash to make your life easier.

See the documentation and the examples in the book for more on this.)

>> character_counts("This is a string with some characters in it.")

{"t"=>5, "h"=>3, "i"=>6, "s"=>5, " "=>8, "a"=>3, "r"=>3, "n"=>2,

"g"=>1, "w"=>1, "o"=>1, "m"=>1, "e"=>2, "c"=>2, "."=>1}

• Write a function called longest words that takes a string as a param-

eter and returns a list of the words in the string in sorted order by

the length of the word. A word is just anything separated by a space.

The split method in the String class may be useful.

2

>> longest_words("this is a sentence with some short and some long words")

["sentence", "words", "short", "some", "some", "this", "with", "long",

"and", "is", "a"]

2 Blocks 201

In a file called assign2 2.rb write functions where the body is a single

statement . Put a comment above each function with the corresponding

problem number (along with your normal comments). In many situations,

you wouldn’t actually right these as separate functions, but to make grading

easier, we will. (Hint: select, select!, map and map! may be useful for

some of these.)

Some advice: Just get the functions working first, then work to try and

compress them down to a single statement. If you find yourself a lot of

complicated code, there is probably an easier way to do it using blocks.

1. Write a function called invert sign that takes an array of numbers

as a parameters and returns a new array with the sign of each number

inverted.

2. Write a function called invert sign! that does the same as above

except modifies the input array rather than creating a new one.

3. Write a function called filter by count that takes a hash and a count

threshold as parameters and returns a new hash where only entries

with values greater than or equal to the count threshold exist.

4. Write a function called filter by count! that does the same as

above, but changes the hash passed in (rather than constructing a

new one).

5. Write a function called filter consonants! that takes a hash as a

parameter and removes any entries from the hash where the key does

not start with a vowel.

6. Write a function called print sorted that takes a hash as a parameter

and prints the key/value pairs one per line formatted as shown below

sorted by values from highest to lowest with the key.

3

>> print_sorted({"t"=>3, "h"=>1, "i"=>2, "s"=>3, " "=>3, "a"=>1, "e"=>1})

t: 3

: 3

s: 3

i: 2

a: 1

h: 1

e: 1

7. Write a function called array transform! that takes an array of

numbers as a parameter and changes any entry in the array to 0 if

the original value was less than the index where that value occurred.

Hint: the ternary operator (i.e. the question mark: ?) may be useful.

>> a = [1, 1, 5, 2, 1, 7]

>> array_transform!(a)

[1, 1, 5, 0, 0, 7]

>> a

[1, 1, 5, 0, 0, 7]

Blocks 301

In class we added each, each with index and find methods to our LinkedList

class to support more Ruby-like traversal. Download this version of the

LinkedList class from the course web pages and add the methods below.

Where possible, avoid traversing the linked list yourself and instead utilize

the each or each with index methods.

• Add a select method to the linked list class that is called with a block

and returns an array with all of the values in the linked list where the

input block returns true.1

l = LinkedList.new

1The better way to do this would probably be to have the function return a new linked

list with the selected values, however, this is a bit more complicated than I’d expect you

to handle. Feel free to try it out (name the function something else) if you’re up for a

challenge.

4

l.add(1)

l.add(2)

l.add(3)

l.add(4)

p l.select{|v| v%2 == 0}

displays: [4, 2]

• Add a select! method that actually modifies the linked list and only

keeps those items in the list where the block returns true. This can be

a bit tricky since it’s a singly linked list. Some pieces of advice:

1. Make sure you think about when you need to update @head.

2. As you work your way through the linked list if you keep a ref-

erence to the current node and a reference to the previous node

you can splice out the current node using the previous reference.

3. This isn’t a lot of code (mine is <20 lines including ends), but

make sure you think through the logic before you start imple-

menting.

l = LinkedList.new

l.add(1)

l.add(2)

l.add(3)

l.add(4)

l.select!{|v| v\%2 == 0}

puts l

displays: 4 2

Style/Comments

Make sure that your program is properly commented and that you’ve used

good style.

Comments

5

• All classes and methods should have a block of comments above them.

• Each file should have a block of code at the top with a brief description,

your name and the date.

• You should comment any tricky or confusing things in the code.

Style

• You should use appropriate attr tags when defining class instance

variables.

• You should appropriately use ? and ! in naming functions.

• You code should be succinct and follow the general ruby conventions,

including variable, method and class naming schemes.

• Your code should be broken down into appropriate functions and

blocks of code.

When you’re done...

Make sure you’ve followed the specifications above.

To submit, follow the instructions on the course web page. You should have

three files: assign2 1.rb, assign2 2.rb and linked list.rb.

Grading

You will be graded based on the following criteria:

6

criterion points

assign2 1.rb 3 per function 15

assign2 2.rb 2 per fuction 14

linked list.rb

select 4

select! 5

Commenting 2

Total 40

7

