
3/13/12

1

Search Trees:
BSTs and B-Trees

David Kauchak
cs302

Spring 2012

Administrative
l  HW grading

Number guessing game

l  I’m thinking of a number between 1 and n
l  You are trying to guess the answer
l  For each guess, I’ll tell you “correct”,
“higher” or “lower”

l  Describe an algorithm that minimizes the
number of guesses

Binary Search Trees
l  BST – A binary tree where a parent’s value is

greater than all values in the left subtree and less
than or equal to all the values in the right subtree

l  the left and right children are also binary trees
l  Why not?

l  Can be implemented with with pointers or an array

leftTree(i)< i ! rightTree(i)

leftTree(i) ! i ! rightTree(i)

3/13/12

2

Example

12

8

 5 9 20

14

What else can we say?
)()(irightiileft ≤<

l  All elements to the left of
a node are less than the
node

l  All elements to the right
of a node are greater
than or equal to the node

l  The smallest element is
the left-most element

l  The largest element is
the right-most element

12

8

 5 9 20

14

Another example: the loner

12

Another example: the twig
12

8

 5

 1

3/13/12

3

Operations
l  Search(T,k) – Does value k exist in tree T
l  Insert(T,k) – Insert value k into tree T
l  Delete(T,x) – Delete node x from tree T
l  Minimum(T) – What is the smallest value in the tree?
l  Maximum(T) – What is the largest value in the tree?
l  Successor(T,x) – What is the next element in sorted

order after x
l  Predecessor(T,x) – What is the previous element in

sorted order of x
l  Median(T) – return the median of the values in tree T

Search

l  How do we find an element?

Finding an element
Search(T, 9)

12

8

 5 9 20

14

)()(irightiileft ≤<
Finding an element

12

8

 5 9 20

14

)()(irightiileft ≤<
Search(T, 9)

3/13/12

4

Finding an element

12

8

 5 9 20

14

)()(irightiileft ≤<
Search(T, 9)

9 > 12?

Finding an element

12

8

 5 9 20

14

)()(irightiileft ≤<
Search(T, 9)

Finding an element

12

8

 5 9 20

14

)()(irightiileft ≤<
Search(T, 9)

Finding an element

12

8

 5 9 20

14

)()(irightiileft ≤<
Search(T, 13)

3/13/12

5

Finding an element
Search(T, 13)

12

8

 5 9 20

14

)()(irightiileft ≤<
Finding an element

12

8

 5 9 20

14

)()(irightiileft ≤<
Search(T, 13)

Finding an element

12

8

 5 9 20

14

)()(irightiileft ≤<

?

Search(T, 13)
Iterative search

3/13/12

6

Is BSTSearch correct?

)()(irightiileft ≤<

Running time of BST

l  Worst case?
l  O(height of the tree)

l  Average case?
l  O(height of the tree)

l  Best case?
l  O(1)

Height of the tree
l  Worst case height?

l  n-1
l  “the twig”

l  Best case height?
l  floor(log2n)
l  complete (or near complete) binary tree

l  Average case height?
l  Depends on two things:

l  the data
l  how we build the tree!

Insertion

3/13/12

7

Insertion

Similar to search

Insertion

Similar to search

Find the correct
location in the tree

Insertion

keeps track of the
previous node we
visited so when we fall
off the tree, we know

Insertion

add node onto the
bottom of the tree

3/13/12

8

Correctness?

maintain BST
property

Correctness

What happens
if it is a
duplicate?

Inserting duplicate
Insert(T, 14)

12

8

 5 9 20

14

)()(irightiileft ≤< Running time

O(height of the tree)

3/13/12

9

Running time

Why not
Θ(height of the tree)?

O(height of the tree)

Running time
12

8

 5

 1

Insert(T, 15)

Height of the tree
l  Worst case: “the twig” – When will this happen?

Height of the tree
l  Best case: “complete” – When will this happen?

3/13/12

10

Height of the tree

l  Average case for random data?

Randomly inserted data into
a BST generates a tree on
average that is O(log n)

Visiting all nodes
l  In sorted order

12

8

 5 9 20

14

Visiting all nodes
l  In sorted order

12

8

 5 9 20

14

5

Visiting all nodes
l  In sorted order

12

8

 5 9 20

14

5, 8

3/13/12

11

Visiting all nodes
l  In sorted order

12

8

 5 9 20

14

5, 8, 9

Visiting all nodes
l  In sorted order

12

8

 5 9 20

14

5, 8, 9, 12

Visiting all nodes
l  What’s happening?

12

8

 5 9 20

14

5, 8, 9, 12

Visiting all nodes
l  In sorted order

12

8

 5 9 20

14

5, 8, 9, 12, 14

3/13/12

12

Visiting all nodes
l  In sorted order

12

8

 5 9 20

14

5, 8, 9, 12, 14, 20

Visiting all nodes in order

Visiting all nodes in order

any operation

Is it correct?

l  Does it print out all of the nodes in sorted
order?

)()(irightiileft ≤<

3/13/12

13

Running time?

l  Recurrence relation:
l  j nodes in the left subtree
l  n – j – 1 in the right subtree

l  Or
l  How much work is done for each call?
l  How many calls?
l  Θ(n)

)1()1()()(Θ+−−+= jnTjTnT

What about?

Preorder traversal

12

8

 5 9 20

14

12, 8, 5, 9, 14, 20

How is this useful?
l  Tree copying: insert in

to new tree in preorder
l  prefix notation: (2+3)*4

-> * + 2 3 4

What about?

3/13/12

14

Postorder traversal

12

8

 5 9 20

14

5, 9, 8, 20, 14, 12

How is this useful?
l  postfix notation:

(2+3)*4 -> 4 3 2 + *
l  ?

Min/Max

12

8

 5 9 20

14

Running time of min/max?

O(height of the tree)

Successor and predecessor

12

8

 5 9 20

14

13

Predecessor(12)? 9

3/13/12

15

Successor and predecessor

12

8

 5 9 20

14

13

Predecessor in general? largest node of all those
smaller than this node

rightmost element of
the left subtree

Successor

12

8

 5 9 20

14

13

Successor(12)? 13

Successor

12

8

 5 9 20

14

13

Successor in general? smallest node of all those
larger than this node

leftmost element of the
right subtree

Successor

12

8

20

14

13

What if the node
doesn’t have a right
subtree?

smallest node of all those
larger than this node

leftmost element of the
right subtree

9 5

3/13/12

16

Successor

12

8

 5 20

14

13

What if the node
doesn’t have a right
subtree?

-  node is the largest
-  the successor is

the node that has x
as a predecessor

9

Successor

12

8

 5 20

14

13

successor is the
node that has x as a
predecessor

9

Successor

12

8

 5 20

14

13

successor is the
node that has x as a
predecessor

9

Successor

12

8

 5 20

14

13

l  successor is the
node that has x as
a predecessor

9

3/13/12

17

Successor

12

8

 5 20

14

13

l  successor is the
node that has x as
a predecessor

9

keep going up until
we’re no longer a
right child

Successor

Successor

if we have a right
subtree, return the
smallest of the right
subtree

Successor

find the node that x is
the predecessor of

keep going up until
we’re no longer a
right child

3/13/12

18

Successor running time

O(height of the tree)

Deletion

12

8

 5 9 20

14

13

Three cases!

Deletion: case 1

l  No children
l  Just delete the node

12

8

 5 9 20

14

13

17

Deletion: case 1

l  No children
l  Just delete the node

12

8

 5 20

14

13

17

3/13/12

19

Deletion: case 2

l  One child
l  Splice out the node

12

8

 5 20

14

13

17

Deletion: case 2

l  One child
l  Splice out the node

12

5

20

14

13

17

Deletion: case 3

l  Two children
l  Replace x with it’s successor

12

5

20

14

13

17

Deletion: case 3

l  Two children
l  Replace x with it’s successor

12

5

20

17

13

3/13/12

20

Deletion: case 3

l  Two children
l  Will we always have a successor?
l  Why successor?

l  Case 1 or case 2 deletion
l  Larger than the left subtree
l  Less than or equal to right subtree

Height of the tree

l  Most of the operations take time
O(height of the tree)

l  We said trees built from random data have
height O(log n), which is asymptotically tight

l  Two problems:
l  We can’t always insure random data
l  What happens when we delete nodes and insert

others after building a tree?

Balanced trees

l  Make sure that the trees remain balanced!
l  Red-black trees
l  AVL trees
l  2-3-4 trees
l  …

l  B-trees

B-tree
l  Defined by one parameter: t
l  Balanced n-ary tree
l  Each node contains between t-1 and 2t-1 keys/data

values (i.e. multiple data values per tree node)
l  keys/data are stored in sorted order
l  one exception: root can have < t-1 keys

l  Each internal node contains between t and 2t
children
l  the keys of a parent delimit the values of the children keys
l  For example, if keyi = 15 and keyi+1 = 25 then child i + 1

must have keys between 15 and 25
l  all leaves have the same depth

3/13/12

21

Example B-tree: t = 2

A H DE F

G N T

C Q

L M R S W

K

Y Z

X

P

Example B-tree: t = 2

Balanced: all leaves
have the same depth

A H DE F

G N T

C Q

L M R S W

K

Y Z

X

P

Example B-tree: t = 2

Each node contains between t-1 and 2t – 1
keys stored in increasing order

A H DE F

G N T

C Q

L M R S W

K

Y Z

X

P

Example B-tree: t = 2

Each node contains between t and 2t children

A H DE F

G N T

C Q

L M R S W

K

Y Z

X

P

3/13/12

22

Example B-tree: t = 2

The keys of a parent delimit the values that
a child’s keys can take

A H DE F

G N T

C Q

L M R S W

K

Y Z

X

P

Example B-tree: t = 2

The keys of a parent delimit the values that
a child’s keys can take

A H DE F

G N T

C Q

L M R S W

K

Y Z

X

P

Example B-tree: t = 2

The keys of a parent delimit the values that
a child’s keys can take

A H DE F

G N T

C Q

L M R S W

K

Y Z

X

P

Example B-tree: t = 2

The keys of a parent delimit the values that
a child’s keys can take

A H DE F

G N T

C Q

L M R S W

K

Y Z

X

P

3/13/12

23

When do we use B-trees over
other balanced trees?
l  B-trees are generally an on-disk data structure

l  Memory is limited or there is a large amount of data to be
stored

l  In the extreme, only one node is kept in memory and the
rest on disk

l  Size of the nodes is often determined by a page size on
disk. Why?

l  Databases frequently use B-trees

Notes about B-trees
l  Because t is generally large, the height of a B-

tree is usually small
l  t = 1001 with height 2 can have over one billion values

l  We will count both run-time as well as the
number of disk accesses. Why?

Height of a B-tree
l  B-trees have a similar feeling to BSTs

l  We saw for BSTs that most of the operations depended
on the height of the tree

l  How can we bound the height of the tree?

l  We know that nodes must have a minimum number of
keys/data items

l  For a tree of height h, what is the smallest number of
keys?

Minimum number of nodes at
each depth?

A H DE F

G N T

C Q

L M R S W

K

Y Z

X

P

2 children

2t children

2th-1 children In general?

1 root J

3/13/12

24

Minimum number of keys/values

∑ =

−−+≥
h

i
ittn

1
12)1(1

root
min. keys
per node

min. number
of nodes

Minimum number of nodes

∑ =

−−+≥
h

i
ittn

1
12)1(1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−

−
−+=

1
1)1(21

t
tt
h

12 −= ht

2/)1(+≤ nth

2
)1(log +

≤
nh t

so,

Searching B-Trees

number of keys

key[i]

child[i]

Find value k into B-Tree node x Searching B-Trees

make disk reads
explicit

3/13/12

25

Searching B-Trees

iterate through the sorted keys
and find the correct location

Searching B-Trees

if we find the value
in this node, return it

Searching B-Trees

if it’s a leaf and we
didn’t find it, it’s not in
the tree

Searching B-Trees

Recurse on the proper
child where the value is
between the keys

3/13/12

26

Search example: R

A H DE F

G N T

C Q

L M R S W

K

Y Z

X

P

Search example: R

A H DE F

G N T

C Q

L M R S W

K

Y Z

X

P

Search example: R

find the correct
location

A H DE F

G N T

C Q

L M R S W

K

Y Z

X

P

Search example: R

the value is not in
this node

A H DE F

G N T

C Q

L M R S W

K

Y Z

X

P

3/13/12

27

Search example: R

this is not a
leaf node

A H DE F

G N T

C Q

L M R S W

K

Y Z

X

P

Search example: R

A H DE F

G N T

C Q

L M R S W

K

Y Z

X

P

Search example: R

A H DE F

G N T

C Q

L M R S W

K

Y Z

X

P

find the correct
location

Search example: R

A H DE F

G N T

C Q

L M R S W

K

Y Z

X

P

not in this node and
this is not a leaf

3/13/12

28

Search example: R

A H DE F

G N T

C Q

L M R S W

K

Y Z

X

P

Search example: R

A H DE F

G N T

C Q

L M R S W

K

Y Z

X

P

find the correct
location

Search example: R

A H DE F

G N T

C Q

L M R S W

K

Y Z

X

P

Search running time
l  How many calls to BTreeSearch?

l  O(height of the tree)
l  O(logtn)

l  Disk accesses?
l  One for each call – O(logtn)

l  Computational time?
l  O(t) keys per node
l  linear search
l  O(t logtn)

l  Why not binary search to find key in a node?

3/13/12

29

BST-Insert

A H DE F

G N T

C Q

L M R S W

K

Y Z

X

P

B-Tree insert
l  Starting at root, follow the search path down the tree

l  If the node is full (contains 2t - 1 keys)
l  split the keys into two nodes around the median value
l  add the median value to the parent node

l  If the node is a leaf, insert it into the correct spot

l  Observations
l  Insertions always happens in the leaves
l  When does the height of a B-tree grow?
l  Why do we know it’s always ok when we’re splitting a

node to insert the median value into the parent?

Insertion: t = 2
G C N A H E K Q M F W L T Z D P R X Y S

Insertion: t = 2

G

G C N A H E K Q M F W L T Z D P R X Y S

3/13/12

30

Insertion: t = 2
G C N A H E K Q M F W L T Z D P R X Y S

C G

Insertion: t = 2

C G N

G C N A H E K Q M F W L T Z D P R X Y S

Insertion: t = 2

C G N

G C N A H E K Q M F W L T Z D P R X Y S

Node is full, so split

Insertion: t = 2
G C N A H E K Q M F W L T Z D P R X Y S

Node is full, so split G

C N

3/13/12

31

Insertion: t = 2
G C N A H E K Q M F W L T Z D P R X Y S

G

A C N

Insertion: t = 2
G C N A H E K Q M F W L T Z D P R X Y S

G

A C N

?

Insertion: t = 2
G C N A H E K Q M F W L T Z D P R X Y S

G

A C H N

Insertion: t = 2
G C N A H E K Q M F W L T Z D P R X Y S

G

A C H N

?

3/13/12

32

Insertion: t = 2
G C N A H E K Q M F W L T Z D P R X Y S

G

A C E H N

Insertion: t = 2
G C N A H E K Q M F W L T Z D P R X Y S

G

A C E H N

?

Insertion: t = 2
G C N A H E K Q M F W L T Z D P R X Y S

G

A C E H K N

Insertion: t = 2
G C N A H E K Q M F W L T Z D P R X Y S

G

A C E H K N

?

3/13/12

33

Insertion: t = 2
G C N A H E K Q M F W L T Z D P R X Y S

G

A C E H K N Node is full, so split

Insertion: t = 2
G C N A H E K Q M F W L T Z D P R X Y S

G K

A C E Node is full, so split H N

Insertion: t = 2
G C N A H E K Q M F W L T Z D P R X Y S

G K

A C E H N Q

Insertion: t = 2
G C N A H E K Q M F W L T Z D P R X Y S

G K

A C E H M N Q

3/13/12

34

Insertion: t = 2
G C N A H E K Q M F W L T Z D P R X Y S

G K

A C E H M N Q

Insertion: t = 2
G C N A H E K Q M F W L T Z D P R X Y S

C G K

A H M N Q E

Insertion: t = 2
G C N A H E K Q M F W L T Z D P R X Y S

C G K

A H M N Q E F

Insertion: t = 2
G C N A H E K Q M F W L T Z D P R X Y S

C G K

A H M N Q E F

3/13/12

35

Insertion: t = 2
G C N A H E K Q M F W L T Z D P R X Y S

C G K

A H M N Q E F

root is full, so split

?

Insertion: t = 2
G C N A H E K Q M F W L T Z D P R X Y S

A H M N Q E F

root is full, so split G

C K

Insertion: t = 2
G C N A H E K Q M F W L T Z D P R X Y S

A H M N Q E F node is full, so split

G

C K

Insertion: t = 2
G C N A H E K Q M F W L T Z D P R X Y S

A H E F node is full, so split

G

C K N

M Q

3/13/12

36

Insertion: t = 2
G C N A H E K Q M F W L T Z D P R X Y S

A H E F

G

C K N

M Q W

Insertion: t = 2
G C N A H E K Q M F W …

A H E F

G

C K N

M Q W

Correctness of insert
l  Starting at root, follow search path down the tree

l  If the node is full (contains 2t - 1 keys), split the keys
around the median value into two nodes and add the
median value to the parent node

l  If the node is a leaf, insert it into the correct spot

l  Does it add the value in the correct spot?
l  Follows the correct search path
l  Inserts in correct position

Correctness of insert
l  Starting at root, follow search path down the tree

l  If the node is full (contains 2t - 1 keys), split the keys
around the median value into two nodes and add the
median value to the parent node

l  If the node is a leaf, insert it into the correct spot

l  Do we maintain a proper B-tree?
l  Maintain t-1 to 2t-1 keys per node?

l  Always split full nodes when we see them
l  Only split full nodes

l  All leaves at the same level?
l  Only add nodes at leaves

3/13/12

37

Insert running time

l  Without any splitting?
l  Similar to BTreeSearch, with one extra disk write

at the leaf
l  O(logtn) disk accesses
l  O(t logtn) computation time

When a node is split
l  How many disk accesses?

l  3 disk write operations
l  2 for the new nodes created by the split (one is

reused, but must be updated)
l  1 for the parent node to add median value

l  Runtime to split a node?
l  O(t) – iterating through the elements a few times

since they’re already in sorted order
l  Maximum number of nodes split for a call to

insert?
l  O(height of the tree)

Running time of insert

l  O(logtn) disk accesses
l  O(t logtn) computational costs

Deleting a node from a B-tree
l  Similar to insertion

l  must make sure we maintain B-tree properties (i.e. all leaves
same depth and key/node restrictions)

l  Proactively move a key from a child to a parent if the parent has
t-1 keys

l  O(logtn) disk accesses
l  O(t logtn) computational costs

3/13/12

38

Summary of operations
l  Search, Insertion, Deletion

l  disk accesses: O(logtn)
l  computation: O(t logtn)

l  Max, Min
l  disk accesses: O(logtn)
l  computation: O(logtn)

l  Tree traversal
l  disk accesses: if 2t ~ page size: O(minimum # pages to store data)
l  Computation: O(n)

