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Search Trees:  
BSTs and B-Trees 

David Kauchak 
cs302 

Spring 2012 

Administrative 
l  HW grading 

Number guessing game 

l  I’m thinking of a number between 1 and n 
l  You are trying to guess the answer 
l  For each guess, I’ll tell you “correct”, 
“higher” or “lower” 

l  Describe an algorithm that minimizes the 
number of guesses 

Binary Search Trees 
l  BST – A binary tree where a parent’s value is 

greater than all values in the left subtree and less 
than or equal to all the values in the right subtree 

l  the left and right children are also binary trees 
l  Why not? 

l  Can be implemented with with pointers or an array 

leftTree(i)< i ! rightTree(i)

leftTree(i) ! i ! rightTree(i)



3/13/12 

2 

Example 

12 
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 5 9 20 

14 

What else can we say? 
)()( irightiileft ≤<

l  All elements to the left of 
a node are less than the 
node 

l  All elements to the right 
of a node are greater 
than or equal to the node 

l  The smallest element is 
the left-most element 

l  The largest element is 
the right-most element 

12 
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 5 9 20 

14 

Another example: the loner 

12 

Another example: the twig 
12 

8 

 5 

 1 
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Operations 
l  Search(T,k) – Does value k exist in tree T 
l  Insert(T,k) – Insert value k into tree T 
l  Delete(T,x) – Delete node x from tree T  
l  Minimum(T) – What is the smallest value in the tree? 
l  Maximum(T) – What is the largest value in the tree? 
l  Successor(T,x) – What is the next element in sorted 

order after x 
l  Predecessor(T,x) – What is the previous element in 

sorted order of x 
l  Median(T) – return the median of the values in tree T 

Search 

l  How do we find an element? 

Finding an element 
Search(T, 9) 
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)()( irightiileft ≤<
Finding an element 
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)()( irightiileft ≤<
Search(T, 9) 
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Finding an element 

12 
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 5 9 20 

14 

)()( irightiileft ≤<
Search(T, 9) 

9 > 12? 

Finding an element 
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)()( irightiileft ≤<
Search(T, 9) 

Finding an element 

12 

8 

 5 9 20 

14 

)()( irightiileft ≤<
Search(T, 9) 

Finding an element 
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)()( irightiileft ≤<
Search(T, 13) 
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Finding an element 
Search(T, 13) 

12 
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 5 9 20 

14 

)()( irightiileft ≤<
Finding an element 

12 
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 5 9 20 

14 

)()( irightiileft ≤<
Search(T, 13) 

Finding an element 

12 

8 

 5 9 20 

14 

)()( irightiileft ≤<

? 

Search(T, 13) 
Iterative search 
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Is BSTSearch correct? 

)()( irightiileft ≤<

Running time of BST 

l  Worst case? 
l  O(height of the tree) 

l  Average case? 
l  O(height of the tree) 

l  Best case? 
l  O(1) 

Height of the tree 
l  Worst case height? 

l  n-1 
l  “the twig” 

l  Best case height? 
l  floor(log2n) 
l  complete (or near complete) binary tree 

l  Average case height? 
l  Depends on two things: 

l  the data 
l  how we build the tree! 

Insertion 
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Insertion 

Similar to search 

Insertion 

Similar to search 

Find the correct 
location in the tree 

Insertion 

keeps track of the 
previous node we 
visited so when we fall 
off the tree, we know  

Insertion 

add node onto the 
bottom of the tree 
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Correctness? 

maintain BST 
property 

Correctness 

What happens 
if it is a 
duplicate? 

Inserting duplicate 
Insert(T, 14) 

12 

8 

 5 9 20 

14 

)()( irightiileft ≤< Running time 

O(height of the tree) 
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Running time 

Why not  
Θ(height of the tree)? 

O(height of the tree) 

Running time 
12 

8 

 5 

 1 

Insert(T, 15) 

Height of the tree 
l  Worst case: “the twig” – When will this happen? 

Height of the tree 
l  Best case: “complete” – When will this happen? 
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Height of the tree 

l  Average case for random data? 

Randomly inserted data into 
a BST generates a tree on 
average that is O(log n) 

Visiting all nodes 
l  In sorted order 
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Visiting all nodes 
l  In sorted order 
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Visiting all nodes 
l  In sorted order 
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5, 8 
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Visiting all nodes 
l  In sorted order 
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5, 8, 9 

Visiting all nodes 
l  In sorted order 

12 
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 5 9 20 

14 

5, 8, 9, 12 

Visiting all nodes 
l  What’s happening? 

12 

8 

 5 9 20 

14 

5, 8, 9, 12 

Visiting all nodes 
l  In sorted order 
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5, 8, 9, 12, 14 
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Visiting all nodes 
l  In sorted order 

12 
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 5 9 20 

14 

5, 8, 9, 12, 14, 20 

Visiting all nodes in order 

Visiting all nodes in order 

any operation 

Is it correct? 

l  Does it print out all of the nodes in sorted 
order? 

)()( irightiileft ≤<
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Running time? 

l  Recurrence relation: 
l  j nodes in the left subtree 
l  n – j – 1 in the right subtree 

l  Or 
l  How much work is done for each call? 
l  How many calls? 
l  Θ(n) 

)1()1()()( Θ+−−+= jnTjTnT

What about? 

Preorder traversal 

12 
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 5 9 20 

14 

12, 8, 5, 9, 14, 20 

How is this useful? 
l  Tree copying: insert in 

to new tree in preorder 
l  prefix notation: (2+3)*4 

-> * + 2 3 4 

What about? 
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Postorder traversal 

12 
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 5 9 20 

14 

5, 9, 8, 20, 14, 12 

How is this useful? 
l  postfix notation: 

(2+3)*4 -> 4 3 2 + * 
l  ? 

Min/Max 
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Running time of min/max? 

O(height of the tree) 

Successor and predecessor 
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13 

Predecessor(12)? 9 



3/13/12 

15 

Successor and predecessor 
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Predecessor in general? largest node of all those 
smaller than this node 

rightmost element of 
the left subtree 

Successor 
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Successor(12)? 13 

Successor 

12 
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 5 9 20 
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13 

Successor in general? smallest node of all those 
larger than this node 

leftmost element of the 
right subtree 

Successor 

12 

8 

20 

14 

13 

What if the node 
doesn’t have a right 
subtree? 

smallest node of all those 
larger than this node 

leftmost element of the 
right subtree 

9  5 
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Successor 

12 
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What if the node 
doesn’t have a right 
subtree? 

-  node is the largest 
-  the successor is 

the node that has x 
as a predecessor 

9 

Successor 
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successor is the 
node that has x as a 
predecessor 

9 

Successor 

12 

8 

 5 20 

14 

13 

successor is the 
node that has x as a 
predecessor 

9 

Successor 
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l  successor is the 
node that has x as 
a predecessor 

9 
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Successor 

12 
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l  successor is the 
node that has x as 
a predecessor 

9 

keep going up until 
we’re no longer a 
right child 

Successor 

Successor 

if we have a right 
subtree, return the 
smallest of the right 
subtree 

Successor 

find the node that x is 
the predecessor of 

keep going up until 
we’re no longer a 
right child 
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Successor running time 

O(height of the tree) 

Deletion 
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Three cases! 

Deletion: case 1 

l  No children 
l  Just delete the node 
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 5 9 20 
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13 

17 

Deletion: case 1 

l  No children 
l  Just delete the node 

12 
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 5 20 

14 

13 

17 
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Deletion: case 2 

l  One child 
l  Splice out the node 
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Deletion: case 2 

l  One child 
l  Splice out the node 

12 

5 

20 

14 

13 

17 

Deletion: case 3 

l  Two children 
l  Replace x with it’s successor 

12 

5 

20 

14 

13 

17 

Deletion: case 3 

l  Two children 
l  Replace x with it’s successor 

12 

5 

20 

17 

13 
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Deletion: case 3 

l  Two children 
l  Will we always have a successor? 
l  Why successor? 

l  Case 1 or case 2 deletion 
l  Larger than the left subtree 
l  Less than or equal to right subtree 

Height of the tree 

l  Most of the operations take time  
O(height of the tree) 

l  We said trees built from random data have 
height O(log n), which is asymptotically tight 

l  Two problems: 
l  We can’t always insure random data 
l  What happens when we delete nodes and insert 

others after building a tree? 

Balanced trees 

l  Make sure that the trees remain balanced! 
l  Red-black trees 
l  AVL trees 
l  2-3-4 trees 
l  … 

l  B-trees 

B-tree 
l  Defined by one parameter: t 
l  Balanced n-ary tree 
l  Each node contains between t-1 and 2t-1 keys/data 

values (i.e. multiple data values per tree node) 
l  keys/data are stored in sorted order 
l  one exception: root can have < t-1 keys 

l  Each internal node contains between t and 2t 
children 
l  the keys of a parent delimit the values of the children keys 
l  For example, if keyi = 15 and keyi+1 = 25 then child i + 1 

must have keys between 15 and 25 
l  all leaves have the same depth 
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Example B-tree: t = 2 

A H DE F 

G N T 

C Q 

L M R S W

K 

Y Z 

X

P 

Example B-tree: t = 2 

Balanced: all leaves 
have the same depth 

A H DE F 

G N T 

C Q 

L M R S W

K 

Y Z 

X

P 

Example B-tree: t = 2 

Each node contains between t-1 and 2t – 1 
keys stored in increasing order 

A H DE F 

G N T 

C Q 

L M R S W

K 

Y Z 

X

P 

Example B-tree: t = 2 

Each node contains between t and 2t children 

A H DE F 

G N T 

C Q 

L M R S W

K 

Y Z 

X

P 
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Example B-tree: t = 2 

The keys of a parent delimit the values that 
a child’s keys can take 

A H DE F 

G N T 

C Q 

L M R S W

K 

Y Z 

X

P 

Example B-tree: t = 2 

The keys of a parent delimit the values that 
a child’s keys can take 

A H DE F 

G N T 

C Q 

L M R S W

K 

Y Z 

X

P 

Example B-tree: t = 2 

The keys of a parent delimit the values that 
a child’s keys can take 

A H DE F 

G N T 

C Q 

L M R S W

K 

Y Z 

X

P 

Example B-tree: t = 2 

The keys of a parent delimit the values that 
a child’s keys can take 

A H DE F 

G N T 

C Q 

L M R S W

K 

Y Z 

X

P 
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When do we use B-trees over 
other balanced trees? 
l  B-trees are generally an on-disk data structure 

l  Memory is limited or there is a large amount of data to be 
stored 

l  In the extreme, only one node is kept in memory and the 
rest on disk 

l  Size of the nodes is often determined by a page size on 
disk.  Why? 

l  Databases frequently use B-trees 
 

Notes about B-trees 
l  Because t is generally large, the height of a B-

tree is usually small 
l  t = 1001 with height 2 can have over one billion values 
 

l  We will count both run-time as well as the 
number of disk accesses. Why? 

Height of a B-tree 
l  B-trees have a similar feeling to BSTs 

l  We saw for BSTs that most of the operations depended 
on the height of the tree 

l  How can we bound the height of the tree? 

l  We know that nodes must have a minimum number of 
keys/data items 

l  For a tree of height h, what is the smallest number of 
keys? 

Minimum number of nodes at 
each depth? 

A H DE F 

G N T 

C Q 

L M R S W

K 

Y Z 

X

P 

2 children 

2t children 

2th-1 children In general? 

1 root J 
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Minimum number of keys/values 
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Minimum number of nodes 
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so, 

Searching B-Trees 

number of keys 

key[i] 

child[i] 

Find value k into B-Tree node x Searching B-Trees 

make disk reads 
explicit 
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Searching B-Trees 

iterate through the sorted keys 
and find the correct location 

Searching B-Trees 

if we find the value 
in this node, return it 

Searching B-Trees 

if it’s a leaf and we 
didn’t find it, it’s not in 
the tree 

Searching B-Trees 

Recurse on the proper 
child where the value is 
between the keys 
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Search example: R 

A H DE F 

G N T 

C Q 

L M R S W

K 

Y Z 

X

P 

Search example: R 

A H DE F 

G N T 

C Q 

L M R S W

K 

Y Z 

X

P 

Search example: R 

find the correct 
location 

A H DE F 

G N T 

C Q 

L M R S W

K 

Y Z 

X

P 

Search example: R 

the value is not in 
this node 

A H DE F 

G N T 

C Q 

L M R S W

K 

Y Z 

X

P 
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Search example: R 

this is not a  
leaf node 

A H DE F 

G N T 

C Q 

L M R S W

K 

Y Z 

X

P 

Search example: R 

A H DE F 

G N T 

C Q 

L M R S W

K 

Y Z 

X

P 

Search example: R 

A H DE F 

G N T 

C Q 

L M R S W

K 

Y Z 

X

P 

find the correct 
location 

Search example: R 

A H DE F 

G N T 

C Q 

L M R S W

K 

Y Z 

X

P 

not in this node and 
this is not a leaf 
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Search example: R 

A H DE F 

G N T 

C Q 

L M R S W

K 

Y Z 

X

P 

Search example: R 

A H DE F 

G N T 

C Q 

L M R S W

K 

Y Z 

X

P 

find the correct 
location 

Search example: R 

A H DE F 

G N T 

C Q 

L M R S W

K 

Y Z 

X

P 

Search running time 
l  How many calls to BTreeSearch? 

l  O(height of the tree) 
l  O(logtn) 

l  Disk accesses? 
l  One for each call – O(logtn) 

l  Computational time? 
l  O(t) keys per node 
l  linear search 
l  O(t logtn) 

l  Why not binary search to find key in a node? 
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BST-Insert 

A H DE F 

G N T 

C Q 

L M R S W

K 

Y Z 

X

P 

B-Tree insert 
l  Starting at root, follow the search path down the tree 

l  If the node is full (contains 2t - 1 keys) 
l  split the keys into two nodes around the median value 
l   add the median value to the parent node 

l  If the node is a leaf, insert it into the correct spot 

l  Observations 
l  Insertions always happens in the leaves 
l  When does the height of a B-tree grow? 
l  Why do we know it’s always ok when we’re splitting a 

node to insert the median value into the parent? 

Insertion: t = 2 
G C N A H E K Q M F W L T Z D P R X Y S  

Insertion: t = 2 

G 

G C N A H E K Q M F W L T Z D P R X Y S  
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Insertion: t = 2 
G C N A H E K Q M F W L T Z D P R X Y S  

C G 

Insertion: t = 2 

C G N 

G C N A H E K Q M F W L T Z D P R X Y S  

Insertion: t = 2 

C G N 

G C N A H E K Q M F W L T Z D P R X Y S  

Node is full, so split 

Insertion: t = 2 
G C N A H E K Q M F W L T Z D P R X Y S  

Node is full, so split G 

C N
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Insertion: t = 2 
G C N A H E K Q M F W L T Z D P R X Y S  

G 

A C N

Insertion: t = 2 
G C N A H E K Q M F W L T Z D P R X Y S  

G 

A C N

? 

Insertion: t = 2 
G C N A H E K Q M F W L T Z D P R X Y S  

G 

A C H N 

Insertion: t = 2 
G C N A H E K Q M F W L T Z D P R X Y S  

G 

A C H N 

? 
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Insertion: t = 2 
G C N A H E K Q M F W L T Z D P R X Y S  

G 

A C E H N 

Insertion: t = 2 
G C N A H E K Q M F W L T Z D P R X Y S  

G 

A C E H N 

? 

Insertion: t = 2 
G C N A H E K Q M F W L T Z D P R X Y S  

G 

A C E H K N 

Insertion: t = 2 
G C N A H E K Q M F W L T Z D P R X Y S  

G 

A C E H K N 

? 
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Insertion: t = 2 
G C N A H E K Q M F W L T Z D P R X Y S  

G 

A C E H K N Node is full, so split 

Insertion: t = 2 
G C N A H E K Q M F W L T Z D P R X Y S  

G K 

A C E Node is full, so split H N 

Insertion: t = 2 
G C N A H E K Q M F W L T Z D P R X Y S  

G K 

A C E H N Q 

Insertion: t = 2 
G C N A H E K Q M F W L T Z D P R X Y S  

G K 

A C E H M N Q 
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Insertion: t = 2 
G C N A H E K Q M F W L T Z D P R X Y S  

G K 

A C E H M N Q 

Insertion: t = 2 
G C N A H E K Q M F W L T Z D P R X Y S  

C G K 

A H M N Q E

Insertion: t = 2 
G C N A H E K Q M F W L T Z D P R X Y S  

C G K 

A H M N Q E F 

Insertion: t = 2 
G C N A H E K Q M F W L T Z D P R X Y S  

C G K 

A H M N Q E F 
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Insertion: t = 2 
G C N A H E K Q M F W L T Z D P R X Y S  

C G K 

A H M N Q E F 

root is full, so split 

? 

Insertion: t = 2 
G C N A H E K Q M F W L T Z D P R X Y S  

A H M N Q E F 

root is full, so split G 

C K 

Insertion: t = 2 
G C N A H E K Q M F W L T Z D P R X Y S  

A H M N Q E F node is full, so split 

G 

C K 

Insertion: t = 2 
G C N A H E K Q M F W L T Z D P R X Y S  

A H E F node is full, so split 

G 

C K N 

M Q 
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Insertion: t = 2 
G C N A H E K Q M F W L T Z D P R X Y S  

A H E F 

G 

C K N 

M Q W 

Insertion: t = 2 
G C N A H E K Q M F W … 

A H E F 

G 

C K N 

M Q W 

Correctness of insert 
l  Starting at root, follow search path down the tree 

l  If the node is full (contains 2t - 1 keys), split the keys 
around the median value into two nodes and add the 
median value to the parent node 

l  If the node is a leaf, insert it into the correct spot 

l  Does it add the value in the correct spot? 
l  Follows the correct search path 
l  Inserts in correct position 

 
 

Correctness of insert 
l  Starting at root, follow search path down the tree 

l  If the node is full (contains 2t - 1 keys), split the keys 
around the median value into two nodes and add the 
median value to the parent node 

l  If the node is a leaf, insert it into the correct spot 

l  Do we maintain a proper B-tree? 
l  Maintain t-1 to 2t-1 keys per node? 

l  Always split full nodes when we see them 
l  Only split full nodes 

l  All leaves at the same level? 
l  Only add nodes at leaves 



3/13/12 

37 

Insert running time 

l  Without any splitting? 
l  Similar to BTreeSearch, with one extra disk write 

at the leaf 
l  O(logtn) disk accesses 
l  O(t logtn) computation time 

When a node is split 
l  How many disk accesses? 

l  3 disk write operations 
l  2 for the new nodes created by the split (one is 

reused, but must be updated) 
l  1 for the parent node to add median value 

l  Runtime to split a node? 
l  O(t) – iterating through the elements a few times 

since they’re already in sorted order 
l  Maximum number of nodes split for a call to 

insert? 
l  O(height of the tree) 

Running time of insert 

l  O(logtn) disk accesses 
l  O(t logtn) computational costs 

Deleting a node from a B-tree 
l  Similar to insertion 

l  must make sure we maintain B-tree properties (i.e. all leaves 
same depth and key/node restrictions) 

l  Proactively move a key from a child to a parent if the parent has 
t-1 keys 

l  O(logtn) disk accesses 
l  O(t logtn) computational costs 
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Summary of operations 
l  Search, Insertion, Deletion 

l  disk accesses: O(logtn) 
l  computation: O(t logtn) 

l  Max, Min 
l  disk accesses: O(logtn) 
l  computation: O(logtn) 

l  Tree traversal 
l  disk accesses: if 2t ~ page size: O(minimum # pages to store data) 
l  Computation: O(n) 


