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Binomial Tree 
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Adapted from: 
Kevin Wayne 

Bk is a binomial tree Bk-1 with 
the addition of a left child with 
another binomial tree Bk-1 

Binomial Tree 

B0 B1 B2 B3 B4 

B1 

Bk-1 

Bk 

B2 
B0 

Number of nodes with 
respect to k? 

N(Bo) = 1 
N(Bk) = 2 N(Bk-1) = 2k 

Binomial Tree 

B0 B1 B2 B3 B4 

Height? 

H(Bo) = 1 
H(Bk) = 1 + H(Bk-1) = k 

B1 

Bk-1 

Bk 

B2 
B0 

Binomial Tree 

B0 B1 B2 B3 B4 

Degree of root node? 

k, each time we add another binomial tree 

B1 

Bk-1 

Bk 

B2 
B0 
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Binomial Tree 

B0 B1 B2 B3 B4 

What are the children of 
the root? 

k-1 binomial trees: 
Bk-1, Bk-2, …, B0 

B1 

Bk-1 

Bk 

B2 
B0 

Binomial Tree 

B4 

depth 2 

depth 3 

depth 4 

depth 0 

depth 1 

Why is it called a binomial tree? 

Binomial Tree 

Bk  has        nodes at depth i. 
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Binomial Heap 
Binomial heap  Vuillemin, 1978. 
Sequence of binomial trees that satisfy binomial heap 
property: 

– each tree is min-heap ordered 
–  top level: full or empty binomial tree of order k 
– which are empty or full is based on the number of 

elements 
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Binomial Heap 
Like our “Kauchak”-set data structure from last time, except 
binomial tree heaps instead of arrays 

B4 B0 B1 

55 

45 32 
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23 22 

50 

48 31 17 

44 8 29 10 

6 

37 

3 18 

A0: [18] 
A1: [3, 7] 
A2: empty 
A3: empty 
A3: [6, 8, 29, 10, 44, 30, 23, 22, 48, 31, 17, 45, 32, 24, 55] 

N = 19 
# trees = 3 
height = 4 
binary = 10011 

Binomial Heap:  Properties 

B4 B0 B1 
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N = 19 
# trees = 3 
height = 4 
binary = 10011 

How many heaps? 

O(log n) – binary number representation 

Binomial Heap:  Properties 

B4 B0 B1 
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N = 19 
# trees = 3 
height = 4 
binary = 10011 

Where is the max/min? 

Must be one of the 
roots of the heaps 

Binomial Heap:  Properties 

B4 B0 B1 
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N = 19 
# trees = 3 
height = 4 
binary = 10011 

Runtime of max/min? 

O(log n) 
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Binomial Heap:  Properties 

B4 B0 B1 

55 

45 32 

30 

24 

23 22 

50 

48 31 17 

44 8 29 10 
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37 

3 18 

N = 19 
# trees = 3 
height = 4 
binary = 10011 

Height? 

floor(log2 n) 
 - largest tree = Blog n 
 - height of that tree is log n 

Binomial Heap:  Union 
How can we merge two binomial tree heaps of the same size (2k)? 

–  connect roots of H' and H'' 
–  choose smaller key to be root of H  

H'' 
55 

45 32 

30 

24 
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48 31 17 

44 8 29 10 

6 

H' 

Runtime? O(1) 

Binomial Heap:  Union 
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What if they’re not they’re not the 
simple heaps of size 2k? 

Binomial Heap:  Union 

0 0 1 1 

1 0 0 1 + 

0 1 1 1 

1 1 

1 
1 
0 

1 

19 + 7 = 26 
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+ 

Go through each tree size starting at 0 and merge as we go 
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Binomial Heap:  Union 

55 

45 32 
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+ 

Binomial Heap:  Union 
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Binomial Heap:  Union 

Analogous to binary addition 
 
Running time? 
  Proportional to number of trees in root lists 2 O(log2 N) 
  O(log N) 

0 0 1 1 

1 0 0 1 + 

0 1 1 1 
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Binomial Heap:  Delete Min/Max 

We can find the min/max in O(log n). 
How can we extract it? 

Hint: Bk consists of 
binomial trees: 
Bk-1, Bk-2, …, B0 
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Binomial Heap:  Delete Min 

Delete node with minimum key in binomial heap H. 
  Find root x with min key in root list of H, and delete 
  H' ←  broken binomial trees 
  H  ←  Union(H', H) 

 

3 

37 

6 18 

55 

45 32 

30 

24 

23 22 

50 

48 31 17 

44 8 29 10 

H 

Binomial Heap:  Delete Min 

Delete node with minimum key in binomial heap H. 
  Find root x with min key in root list of H, and delete 
  H' ←  broken binomial trees 
  H  ←  Union(H', H) 

Running time?   
 
 

O(log N) 
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6 18 
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Binomial Heap:  Decrease Key 

Just call Decrease-Key/Increase-Key of Heap 
  Suppose x is in binomial tree Bk 
  Bubble node x up the tree if x is too small 

Running time:  O(log N) 
  Proportional to depth of node x 

depth = 3 

Binomial Heap:  Delete 

Delete node x in binomial heap H 
  Decrease key of x to -∞ 
  Delete min 

Running time:  O(log N) 
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Binomial Heap:  Insert 

Insert a new node x into binomial heap H 
  H' ←  MakeHeap(x) 
  H  ←  Union(H', H) 

Running time.  O(log N) 
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Build-Heap 

Call insert n times 

Runtime? 

Can we get a tighter bound? 

O(n log n) 

Build-Heap 

Call insert n times 

Consider inserting n numbers 
  how many times will B0 be empty?  
  how many times will we need to merge with B0? 
  how many times will we need to merge with B1? 
  how many times will we need to merge with B2? 
  … 
  how many times will we need to merge with Blog n? 

times cost 

Build-Heap 

Call insert n times 

Consider inserting n numbers 
  how many times will B0 be empty?    n/2  O(1) 
  how many times will we need to merge with B0?   n/2  O(1) 
  how many times will we need to merge with B1?   n/4  O(1) 
  how many times will we need to merge with B2?   n/8  O(1) 
  … 
  how many times will we need to merge with Blog n? 1  O(1) 

times cost 

Runtime? Θ(n) 
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Heaps Fibonacci Heaps 
Similar to binomial heap 
•  A Fibonacci heap consists of a sequence of heaps 
More flexible 
•  Heaps do not have to be binomial trees 
More complicated J 
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Heaps 

Should you always use a Fibonacci heap? 

Heaps 

•  Extract-Max and Delete are O(n) worst case 
•  Constants can be large on some of the operations 
•  Complicated to implement 
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Heaps 

Can we do better? 


