
3/8/12

1

Binomial Tree

Bk-1

Bk-1

B0 Bk

B0 B1 B2 B3 B4

Adapted from:
Kevin Wayne

Bk is a binomial tree Bk-1 with
the addition of a left child with
another binomial tree Bk-1

Binomial Tree

B0 B1 B2 B3 B4

B1

Bk-1

Bk

B2
B0

Number of nodes with
respect to k?

N(Bo) = 1
N(Bk) = 2 N(Bk-1) = 2k

Binomial Tree

B0 B1 B2 B3 B4

Height?

H(Bo) = 1
H(Bk) = 1 + H(Bk-1) = k

B1

Bk-1

Bk

B2
B0

Binomial Tree

B0 B1 B2 B3 B4

Degree of root node?

k, each time we add another binomial tree

B1

Bk-1

Bk

B2
B0

3/8/12

2

Binomial Tree

B0 B1 B2 B3 B4

What are the children of
the root?

k-1 binomial trees:
Bk-1, Bk-2, …, B0

B1

Bk-1

Bk

B2
B0

Binomial Tree

B4

depth 2

depth 3

depth 4

depth 0

depth 1

Why is it called a binomial tree?

Binomial Tree

Bk has nodes at depth i.

B4

⎟
⎠

⎞
⎜
⎝

⎛
i
k

6
2
4

=⎟
⎠

⎞
⎜
⎝

⎛

depth 2

depth 3

depth 4

depth 0

depth 1

Binomial Heap
Binomial heap Vuillemin, 1978.
Sequence of binomial trees that satisfy binomial heap
property:

– each tree is min-heap ordered
–  top level: full or empty binomial tree of order k
– which are empty or full is based on the number of

elements

B4 B0 B1

55

45 32

30

24

23 22

50

48 31 17

44 8 29 10

6

37

3 18

3/8/12

3

Binomial Heap
Like our “Kauchak”-set data structure from last time, except
binomial tree heaps instead of arrays

B4 B0 B1

55

45 32

30

24

23 22

50

48 31 17

44 8 29 10

6

37

3 18

A0: [18]
A1: [3, 7]
A2: empty
A3: empty
A3: [6, 8, 29, 10, 44, 30, 23, 22, 48, 31, 17, 45, 32, 24, 55]

N = 19
trees = 3
height = 4
binary = 10011

Binomial Heap: Properties

B4 B0 B1

55

45 32

30

24

23 22

50

48 31 17

44 8 29 10

6

37

3 18

N = 19
trees = 3
height = 4
binary = 10011

How many heaps?

O(log n) – binary number representation

Binomial Heap: Properties

B4 B0 B1

55

45 32

30

24

23 22

50

48 31 17

44 8 29 10

6

37

3 18

N = 19
trees = 3
height = 4
binary = 10011

Where is the max/min?

Must be one of the
roots of the heaps

Binomial Heap: Properties

B4 B0 B1

55

45 32

30

24

23 22

50

48 31 17

44 8 29 10

6

37

3 18

N = 19
trees = 3
height = 4
binary = 10011

Runtime of max/min?

O(log n)

3/8/12

4

Binomial Heap: Properties

B4 B0 B1

55

45 32

30

24

23 22

50

48 31 17

44 8 29 10

6

37

3 18

N = 19
trees = 3
height = 4
binary = 10011

Height?

floor(log2 n)
 - largest tree = Blog n
 - height of that tree is log n

Binomial Heap: Union
How can we merge two binomial tree heaps of the same size (2k)?

–  connect roots of H' and H''
–  choose smaller key to be root of H

H''
55

45 32

30

24

23 22

50

48 31 17

44 8 29 10

6

H'

Runtime? O(1)

Binomial Heap: Union

55

45 32

30

24

23 22

50

48 31 17

44 8 29 10

6

37

3 18

33 28

15

25

7 12

What if they’re not they’re not the
simple heaps of size 2k?

Binomial Heap: Union

0 0 1 1

1 0 0 1 +

0 1 1 1

1 1

1
1
0

1

19 + 7 = 26

55

45 32

30

24

23 22

50

48 31 17

44 8 29 10

6

37

3 18

41

33 28

15

25

7 12

+

Go through each tree size starting at 0 and merge as we go

3/8/12

5

Binomial Heap: Union

55

45 32

30

24

23 22

50

48 31 17

44 8 29 10

6

37

3 18

41

33 28

15

25

7 12

+

Binomial Heap: Union

55

45 32

30

24

23 22

50

48 31 17

44 8 29 10

6

37

3

41

33 28

15

25

7

+

12

18

18

12

55

45 32

30

24

23 22

50

48 31 17

44 8 29 10

6

37

3

41

33 28

15

25

7

+

12

18

25

37 7

3

18

12

18

12

55

45 32

30

24

23 22

50

48 31 17

44 8 29 10

6

37

3

41

33 28

15

25

7

12

+

18

25

37 7

3

41

28 33 25

37 15 7

3

18

12

18

12

3/8/12

6

55

45 32

30

24

23 22

50

48 31 17

44 8 29 10

6

37

3

41

33 28

15

25

7

+

18

12

41

28 33 25

37 15 7

3

12

18

25

37 7

3

41

28 33 25

37 15 7

3

18

12

55

45 32

30

24

23 22

50

48 31 17

44 8 29 10

6

37

3

41

33 28

15

25

7

+

18

12

41

28 33 25

37 15 7

3

12

18

25

37 7

3

41

28 33 25

37 15 7

3

55

45 32

30

24

23 22

50

48 31 17

44 8 29 10

6

18

12

Binomial Heap: Union

Analogous to binary addition

Running time?
  Proportional to number of trees in root lists 2 O(log2 N)
  O(log N)

0 0 1 1

1 0 0 1 +

0 1 1 1

1 1

1
1
0

1

19 + 7 = 26

3

37

6 18

55

45 32

30

24

23 22

50

48 31 17

44 8 29 10

H

Binomial Heap: Delete Min/Max

We can find the min/max in O(log n).
How can we extract it?

Hint: Bk consists of
binomial trees:
Bk-1, Bk-2, …, B0

3/8/12

7

3

37

6 18

55

45 32

30

24

23 22

50

48 31 17

44 8 29 10

H

Binomial Heap: Delete Min

Delete node with minimum key in binomial heap H.
  Find root x with min key in root list of H, and delete
  H' ← broken binomial trees
  H ← Union(H', H)

3

37

6 18

55

45 32

30

24

23 22

50

48 31 17

44 8 29 10

H

Binomial Heap: Delete Min

Delete node with minimum key in binomial heap H.
  Find root x with min key in root list of H, and delete
  H' ← broken binomial trees
  H ← Union(H', H)

Running time?

O(log N)

3

37

6 18

55

x 32

30

24

23 22

50

48 31 17

44 8 29 10

H

Binomial Heap: Decrease Key

Just call Decrease-Key/Increase-Key of Heap
  Suppose x is in binomial tree Bk
  Bubble node x up the tree if x is too small

Running time: O(log N)
  Proportional to depth of node x

depth = 3

Binomial Heap: Delete

Delete node x in binomial heap H
  Decrease key of x to -∞
  Delete min

Running time: O(log N)

3/8/12

8

Binomial Heap: Insert

Insert a new node x into binomial heap H
  H' ← MakeHeap(x)
  H ← Union(H', H)

Running time. O(log N)

3

37

6 18

55

45 32

30

24

23 22

50

48 31 17

44 8 29 10

H

x

H'

Build-Heap

Call insert n times

Runtime?

Can we get a tighter bound?

O(n log n)

Build-Heap

Call insert n times

Consider inserting n numbers
  how many times will B0 be empty?
  how many times will we need to merge with B0?
  how many times will we need to merge with B1?
  how many times will we need to merge with B2?
  …
  how many times will we need to merge with Blog n?

times cost

Build-Heap

Call insert n times

Consider inserting n numbers
  how many times will B0 be empty? n/2 O(1)
  how many times will we need to merge with B0? n/2 O(1)
  how many times will we need to merge with B1? n/4 O(1)
  how many times will we need to merge with B2? n/8 O(1)
  …
  how many times will we need to merge with Blog n? 1 O(1)

times cost

Runtime? Θ(n)

3/8/12

9

Heaps Fibonacci Heaps
Similar to binomial heap
•  A Fibonacci heap consists of a sequence of heaps
More flexible
•  Heaps do not have to be binomial trees
More complicated J

23 7
3

38 52 30 18

39 41

17

35

46 26

24

Min [H]

Heaps

Should you always use a Fibonacci heap?

Heaps

•  Extract-Max and Delete are O(n) worst case
•  Constants can be large on some of the operations
•  Complicated to implement

3/8/12

10

Heaps

Can we do better?

