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Amortized Analysis 
and Heaps Intro 

David Kauchak 
cs302 

Spring 2012 

Admin 
l  Looking for summer researchers in CS at 

Middlebury 
l  Deadline Friday 
l  Come talk to me if you want to hear more… 

l  CS lunch 
l  Looking ahead… 

l  Take-home midterm the week before spring break 
l  open notes and book 
l  will be timed 

l  Review on Tuesday of that week 

Admin 

l  Assignment averages 
l  1:  28.7/30 
l  2:  42.3/49 
l  3:  21.4/23 
l  4:  26.7/32 
l  5:  18.8/20 

Extensible array 

l  Sequential locations in memory in linear order 
l  Elements are accessed via index 

l  Access of particular indices is O(1) 
l  Say we want to implement an array that 

supports add (i.e. addToBack) 
l  ArrayList or Vector in Java 
l  arrays in Python, perl, Ruby, … 

l  How can we do it? 



3/6/12 

2 

Extensible array 
l  Idea 1: Each time we call add, create a new 

array one element large, copy the data over and 
add the element 

Running time: Θ(n) 

Extensible array 

l  Idea 2: Allocate extra, unused memory and 
save room to add elements 

l  For example:  new ArrayList(2) 

allocated for 
actual array 

extra space for 
calls to add 

Extensible array 

l  Idea 2: Allocate extra, unused memory and 
save room to add elements 

l  Adding an item: 

Running time: Θ(1) Problems? 

Extensible array 

l  Idea 2: Allocate extra, unused memory and 
save room to add elements 

l  How much extra space do we allocate? 

Too little, and we might run out (e.g. add 15 items) 

Too much, and we waste lots of memory 

Ideas? 



3/6/12 

3 

Extensible array 

l  Idea 3: Allocate some extra memory and when it fills up, 
allocate some more and copy 

l  For example:  new ArrayList(2) 

… 

Extensible array 
… 

l  Most of the calls to add will be O(1) 
l  What is the average running time of add in 

the worst case? 
l  Note this is different than the average-case 

running time 

Amortized analysis 

l  There are many situations where the worst 
case running time is bad 

l  However, if we average the operations over n 
operations, the average time is more 
reasonable 

l  This is called amortized analysis 
l  This is different than average-case running time, 

which requires probabilistic reasoning about input 
l  The worse case running time doesn’t change 

Amortized analysis 
l  Many approaches for calculating the amortized 

analysis 
l  we’ll just look at the counting method 
l  book has others 

l  aggregate method 
l  figure out the big-O runtime for a sequence of n calls 
l  divide by n to get the average run-time per call 
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Amortized analysis 
What is the aggregate cost of n calls? 

Let’s assume it’s O(1) and then prove it 

Base case: size 1 array, add an element: O(1) 

Inductive case: assume n-1 calls are O(1), show that 
nth call is O(1) 

Two cases: 
-  array need to be doubled 
-  array does need to be doubled 

Amortized analysis 
What is the aggregate cost of n calls? 
l  Case 1: doesn’t need doubling 

l   just add the element into the current array 
l  O(1) 

l  Case 2: need doubling 
l  O(n) operation to copy all the data over 
l  Overall cost of n-insertion: 

l  n-1*O(1) + O(n) = O(n) 
l  Amortized cost: O(n)/n = O(1) 

We amortize (spread) the cost of the O(n) operation 
over all of the previous O(1) operations 

Amortized analysis 

Another way we could have done the analysis would 
be to calculate the total cost over n operations 

double_cost(n) !  1+ 2+ 4+8+16+...+ n = 2n

total_cost(n) = basic_cost(n) + double_cost(n)

basic_cost(n) = O(n)

total_cost(n) = O(n) amortized O(1) 

Amortized analysis vs.  
worse case 

l  What is the worse case of add? 
l  Still O(n) 
l  If you have an application that needs it to be O(1), 

this implementation will not work! 
l  amortized analysis give you the cost of n 

operations (i.e. average cost) not the cost of 
any individual operation 
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Extensible arrays 

l  What if instead of doubling the array, we add 
instead increase the array by a fixed amount 
(call it k) each time 

l  Is the amortized run-time still O(1)? 
l  No! 
l  Why? 

Amortized analysis 
Consider the cost of n insertions for some constant k  

double_cost(n) =k+2k+3k+4k+5k+...+n

total_cost(n) = basic_cost(n) + double_cost(n)

basic_cost(n) = O(n)
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Amortized analysis 
Consider the cost of n insertions for some constant k  

total_cost(n) = O(n)+O(n2 )

= O(n2 )

amortized O(n)! 

Another set data structure 
l  We want to support fast lookup and insertion (i.e. faster 

than linear) 

l  Arrays can easily made to be fast for one or the other 
l  fast search: keep list sorted 

l  O(n) insert 
l  O(log n) search 

l  fast insert: extensible array 
l  O(1) insert (amortized) 
l  O(n) search 



3/6/12 

6 

Another set data structure 
l  Idea: store data in a collection of arrays 

l  array i has size 2i 

l  an array is either full or empty (never partially full) 
l  each array is stored in sorted order 
l  no relationship between arrays 

Another set data structure 
l  Which arrays are full and empty arrays are based on the 

number of elements 
l  specifically, binary representation of the number of elements 
l  4 items = 100 = A2-full, A1-empty, A0-empty 
l  11 items = 1011 = A3-full, A2-empty, A1-full, A0-full 

l  Lookup: binary search through each array 
l  Worse case runtime? 

A0: [5] 
A1: [4, 8] 
A2: empty 
A3: [2, 6, 9, 12, 13, 16, 20, 25] 

Another set data structure 

l  Lookup: binary search through each array 

l  Worse case: all arrays are full 
l  number of arrays = number of digits = log n 
l  binary search cost for each array = O(log n) 
l  O(log n log n)  

A0: [5] 
A1: [4, 8] 
A2: empty 
A3: [2, 6, 9, 12, 13, 16, 20, 25] 

Another set data structure 

l  Insert 
l  starting at i = 0 
l  current = [item] 
l  as long as the level i is full 

l  merge current with Ai using merge procedure 
l  store to current 
l  Ai = empty 
l  i++ 

l   Ai = current 
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Insert 5 
A0: empty 

l  Insert 
l  starting at i = 0 
l  current = [item] 
l  as long as the level i is full 

l  merge current with Ai using merge 
procedure 

l  store to current 
l  Ai = empty 
l  i++ 

l   Ai = current 

Insert 5 
A0: [5] 

l  Insert 
l  starting at i = 0 
l  current = [item] 
l  as long as the level i is full 

l  merge current with Ai using merge 
procedure 

l  store to current 
l  Ai = empty 
l  i++ 

l   Ai = current 

Insert 6 
A0: [5] 

l  Insert 
l  starting at i = 0 
l  current = [item] 
l  as long as the level i is full 

l  merge current with Ai using merge 
procedure 

l  store to current 
l  Ai = empty 
l  i++ 

l   Ai = current 

Insert 6 
A0: empty 
A1: [5, 6] 
 

l  Insert 
l  starting at i = 0 
l  current = [item] 
l  as long as the level i is full 

l  merge current with Ai using merge 
procedure 

l  store to current 
l  Ai = empty 
l  i++ 

l   Ai = current 
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Insert 12 
A0: empty 
A1: [5, 6] 
 

l  Insert 
l  starting at i = 0 
l  current = [item] 
l  as long as the level i is full 

l  merge current with Ai using merge 
procedure 

l  store to current 
l  Ai = empty 
l  i++ 

l   Ai = current 

Insert 12 
A0: [12] 
A1: [5, 6] 
 

l  Insert 
l  starting at i = 0 
l  current = [item] 
l  as long as the level i is full 

l  merge current with Ai using merge 
procedure 

l  store to current 
l  Ai = empty 
l  i++ 

l   Ai = current 

Insert 4 
A0: [12] 
A1: [5, 6] 
 

l  Insert 
l  starting at i = 0 
l  current = [item] 
l  as long as the level i is full 

l  merge current with Ai using merge 
procedure 

l  store to current 
l  Ai = empty 
l  i++ 

l   Ai = current 

Insert 4 
A0: empty 
A1: empty 
A2: [4, 5, 6, 12] 

l  Insert 
l  starting at i = 0 
l  current = [item] 
l  as long as the level i is full 

l  merge current with Ai using merge 
procedure 

l  store to current 
l  Ai = empty 
l  i++ 

l   Ai = current 
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Insert 23 
A0: empty 
A1: empty 
A2: [4, 5, 6, 12] 

l  Insert 
l  starting at i = 0 
l  current = [item] 
l  as long as the level i is full 

l  merge current with Ai using merge 
procedure 

l  store to current 
l  Ai = empty 
l  i++ 

l   Ai = current 

Insert 23 
A0: [23] 
A1: empty 
A2: [4, 5, 6, 12] 

l  Insert 
l  starting at i = 0 
l  current = [item] 
l  as long as the level i is full 

l  merge current with Ai using merge 
procedure 

l  store to current 
l  Ai = empty 
l  i++ 

l   Ai = current 

Another set data structure 
l  Insert 

l  starting at i = 0 
l  current = [item] 
l  as long as the level i is full 

l  merge current with Ai using merge procedure 
l  store to current 
l  Ai = empty 
l  i++ 

l   Ai = current 

running time? 

Another set data structure 
l  Insert 

l  starting at i = 0 
l  current = [item] 
l  as long as the level i is full 

l  merge current with Ai using merge procedure 
l  store to current 
l  Ai = empty 
l  i++ 

l   Ai = current 

running time? 
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Insert running time 
l  Worse case 

l  merge at each level 
l  2 + 4 + 8 + … + n/2 + n = O(n) 

l  There are many insertions that won’t fall into this 
worse case 

l  What is the amortized worse case for insertion? 

insert: amortized analysis 

l  Consider inserting n numbers 
l  how many times will A0 be empty? 
l  how many times will we need to merge with A0? 
l  how many times will we need to merge with A1? 
l  how many times will we need to merge with A2? 
l  … 
l  how many times will we need to merge with Alog n? 

insert: amortized analysis 

l  Consider inserting n numbers 
l  how many times will A0 be empty?   n/2 
l  how many times will we need to merge with A0?  n/2 
l  how many times will we need to merge with A1?  n/4 
l  how many times will we need to merge with A2?  n/8 
l  … 
l  how many times will we need to merge with Alog n? 1 

cost of each of these steps? 

times 

insert: amortized analysis 

l  Consider inserting n numbers 
l  how many times will A0 be empty?   n/2  O(1) 
l  how many times will we need to merge with A0?  n/2  2 
l  how many times will we need to merge with A1?  n/4  4 
l  how many times will we need to merge with A2?  n/8  8 
l  … 
l  how many times will we need to merge with Alog n? 1  n 

total cost: 

times cost 
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insert: amortized analysis 

l  Consider inserting n numbers 
l  how many times will A0 be empty?   n/2  O(1) 
l  how many times will we need to merge with A0?  n/2  2 
l  how many times will we need to merge with A1?  n/4  4 
l  how many times will we need to merge with A2?  n/8  8 
l  … 
l  how many times will we need to merge with Alog n? 1  n 

total cost:  log n levels * O(n) each level 
  O(n log n) cost for n inserts 
  O(log n) amortized cost! 

times cost 

Binary heap 

l  A binary tree where the value of a parent is 
greater than or equal to the value of it’s 
children 

l  Additional restriction: all levels of the tree are 
complete except the last 

l  Max heap vs. min heap 

Binary heap - operations 
l  Maximum(S) - return the largest element in the set 

l  ExtractMax(S) – Return and remove the largest element 
in the set 

l  Insert(S, val) – insert val into the set 

l  IncreaseElement(S, x, val) – increase the value of 
element x to val 

l  BuildHeap(A) – build a heap from an array of elements 

Binary heap 

How can we represent a heap? 
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Binary heap - references 

16 

14 10 

8 

2 4 1 

7 9 3 

parent ≥ child  

complete tree  

level does not 
indicate size 

all nodes in 
a heap are 
themselves 
heaps 

Binary heap - array 

Binary heap - array 

16  14  10   8    7    9    3    2    4    1 

1   2    3    4    5    6    7    8    9    10 

Binary heap - array 

16  14  10   8    7    9    3    2    4    1 

1   2    3    4    5    6    7    8    9    10 

Left child of A[3]? 
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Binary heap - array 

16  14  10   8    7    9    3    2    4    1 

1   2    3    4    5    6    7    8    9    10 

Left child of A[3]? 

2*3 = 6 

Binary heap - array 

16  14  10   8    7    9    3    2    4    1 

1   2    3    4    5    6    7    8    9    10 

Parent of A[8]? 

Binary heap - array 

16  14  10   8    7    9    3    2    4    1 

1   2    3    4    5    6    7    8    9    10 

Parent of A[8]? 

⎣ ⎦ 42/8 =

Binary heap - array 

16  14  10   8    7    9    3    2    4    1 

1   2    3    4    5    6    7    8    9    10 

16 

14 10 

8 

2 4 1 

7 9 3 
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Identify the valid heaps 

8 

[15, 12, 3, 11, 10, 2, 1, 7, 8] 

[20, 18, 10, 17, 16, 15, 9, 14, 13] 

16 

10 15 

9 3 


