
3/6/12

1

Amortized Analysis
and Heaps Intro

David Kauchak
cs302

Spring 2012

Admin
l  Looking for summer researchers in CS at

Middlebury
l  Deadline Friday
l  Come talk to me if you want to hear more…

l  CS lunch
l  Looking ahead…

l  Take-home midterm the week before spring break
l  open notes and book
l  will be timed

l  Review on Tuesday of that week

Admin

l  Assignment averages
l  1: 28.7/30
l  2: 42.3/49
l  3: 21.4/23
l  4: 26.7/32
l  5: 18.8/20

Extensible array

l  Sequential locations in memory in linear order
l  Elements are accessed via index

l  Access of particular indices is O(1)
l  Say we want to implement an array that

supports add (i.e. addToBack)
l  ArrayList or Vector in Java
l  arrays in Python, perl, Ruby, …

l  How can we do it?

3/6/12

2

Extensible array
l  Idea 1: Each time we call add, create a new

array one element large, copy the data over and
add the element

Running time: Θ(n)

Extensible array

l  Idea 2: Allocate extra, unused memory and
save room to add elements

l  For example: new ArrayList(2)

allocated for
actual array

extra space for
calls to add

Extensible array

l  Idea 2: Allocate extra, unused memory and
save room to add elements

l  Adding an item:

Running time: Θ(1) Problems?

Extensible array

l  Idea 2: Allocate extra, unused memory and
save room to add elements

l  How much extra space do we allocate?

Too little, and we might run out (e.g. add 15 items)

Too much, and we waste lots of memory

Ideas?

3/6/12

3

Extensible array

l  Idea 3: Allocate some extra memory and when it fills up,
allocate some more and copy

l  For example: new ArrayList(2)

…

Extensible array
…

l  Most of the calls to add will be O(1)
l  What is the average running time of add in

the worst case?
l  Note this is different than the average-case

running time

Amortized analysis

l  There are many situations where the worst
case running time is bad

l  However, if we average the operations over n
operations, the average time is more
reasonable

l  This is called amortized analysis
l  This is different than average-case running time,

which requires probabilistic reasoning about input
l  The worse case running time doesn’t change

Amortized analysis
l  Many approaches for calculating the amortized

analysis
l  we’ll just look at the counting method
l  book has others

l  aggregate method
l  figure out the big-O runtime for a sequence of n calls
l  divide by n to get the average run-time per call

3/6/12

4

Amortized analysis
What is the aggregate cost of n calls?

Let’s assume it’s O(1) and then prove it

Base case: size 1 array, add an element: O(1)

Inductive case: assume n-1 calls are O(1), show that
nth call is O(1)

Two cases:
-  array need to be doubled
-  array does need to be doubled

Amortized analysis
What is the aggregate cost of n calls?
l  Case 1: doesn’t need doubling

l  just add the element into the current array
l  O(1)

l  Case 2: need doubling
l  O(n) operation to copy all the data over
l  Overall cost of n-insertion:

l  n-1*O(1) + O(n) = O(n)
l  Amortized cost: O(n)/n = O(1)

We amortize (spread) the cost of the O(n) operation
over all of the previous O(1) operations

Amortized analysis

Another way we could have done the analysis would
be to calculate the total cost over n operations

double_cost(n) ! 1+ 2+ 4+8+16+...+ n = 2n

total_cost(n) = basic_cost(n) + double_cost(n)

basic_cost(n) = O(n)

total_cost(n) = O(n) amortized O(1)

Amortized analysis vs.
worse case

l  What is the worse case of add?
l  Still O(n)
l  If you have an application that needs it to be O(1),

this implementation will not work!
l  amortized analysis give you the cost of n

operations (i.e. average cost) not the cost of
any individual operation

3/6/12

5

Extensible arrays

l  What if instead of doubling the array, we add
instead increase the array by a fixed amount
(call it k) each time

l  Is the amortized run-time still O(1)?
l  No!
l  Why?

Amortized analysis
Consider the cost of n insertions for some constant k

double_cost(n) =k+2k+3k+4k+5k+...+n

total_cost(n) = basic_cost(n) + double_cost(n)

basic_cost(n) = O(n)

 = ki
i=1

n/k

!

 =k i
i=1

n/k

!

 =k

n
k
n
k
+1

!

"
#

$

%
&

2
=O(n2)

Amortized analysis
Consider the cost of n insertions for some constant k

total_cost(n) = O(n)+O(n2)

= O(n2)

amortized O(n)!

Another set data structure
l  We want to support fast lookup and insertion (i.e. faster

than linear)

l  Arrays can easily made to be fast for one or the other
l  fast search: keep list sorted

l  O(n) insert
l  O(log n) search

l  fast insert: extensible array
l  O(1) insert (amortized)
l  O(n) search

3/6/12

6

Another set data structure
l  Idea: store data in a collection of arrays

l  array i has size 2i

l  an array is either full or empty (never partially full)
l  each array is stored in sorted order
l  no relationship between arrays

Another set data structure
l  Which arrays are full and empty arrays are based on the

number of elements
l  specifically, binary representation of the number of elements
l  4 items = 100 = A2-full, A1-empty, A0-empty
l  11 items = 1011 = A3-full, A2-empty, A1-full, A0-full

l  Lookup: binary search through each array
l  Worse case runtime?

A0: [5]
A1: [4, 8]
A2: empty
A3: [2, 6, 9, 12, 13, 16, 20, 25]

Another set data structure

l  Lookup: binary search through each array

l  Worse case: all arrays are full
l  number of arrays = number of digits = log n
l  binary search cost for each array = O(log n)
l  O(log n log n)

A0: [5]
A1: [4, 8]
A2: empty
A3: [2, 6, 9, 12, 13, 16, 20, 25]

Another set data structure

l  Insert
l  starting at i = 0
l  current = [item]
l  as long as the level i is full

l  merge current with Ai using merge procedure
l  store to current
l  Ai = empty
l  i++

l  Ai = current

3/6/12

7

Insert 5
A0: empty

l  Insert
l  starting at i = 0
l  current = [item]
l  as long as the level i is full

l  merge current with Ai using merge
procedure

l  store to current
l  Ai = empty
l  i++

l  Ai = current

Insert 5
A0: [5]

l  Insert
l  starting at i = 0
l  current = [item]
l  as long as the level i is full

l  merge current with Ai using merge
procedure

l  store to current
l  Ai = empty
l  i++

l  Ai = current

Insert 6
A0: [5]

l  Insert
l  starting at i = 0
l  current = [item]
l  as long as the level i is full

l  merge current with Ai using merge
procedure

l  store to current
l  Ai = empty
l  i++

l  Ai = current

Insert 6
A0: empty
A1: [5, 6]

l  Insert
l  starting at i = 0
l  current = [item]
l  as long as the level i is full

l  merge current with Ai using merge
procedure

l  store to current
l  Ai = empty
l  i++

l  Ai = current

3/6/12

8

Insert 12
A0: empty
A1: [5, 6]

l  Insert
l  starting at i = 0
l  current = [item]
l  as long as the level i is full

l  merge current with Ai using merge
procedure

l  store to current
l  Ai = empty
l  i++

l  Ai = current

Insert 12
A0: [12]
A1: [5, 6]

l  Insert
l  starting at i = 0
l  current = [item]
l  as long as the level i is full

l  merge current with Ai using merge
procedure

l  store to current
l  Ai = empty
l  i++

l  Ai = current

Insert 4
A0: [12]
A1: [5, 6]

l  Insert
l  starting at i = 0
l  current = [item]
l  as long as the level i is full

l  merge current with Ai using merge
procedure

l  store to current
l  Ai = empty
l  i++

l  Ai = current

Insert 4
A0: empty
A1: empty
A2: [4, 5, 6, 12]

l  Insert
l  starting at i = 0
l  current = [item]
l  as long as the level i is full

l  merge current with Ai using merge
procedure

l  store to current
l  Ai = empty
l  i++

l  Ai = current

3/6/12

9

Insert 23
A0: empty
A1: empty
A2: [4, 5, 6, 12]

l  Insert
l  starting at i = 0
l  current = [item]
l  as long as the level i is full

l  merge current with Ai using merge
procedure

l  store to current
l  Ai = empty
l  i++

l  Ai = current

Insert 23
A0: [23]
A1: empty
A2: [4, 5, 6, 12]

l  Insert
l  starting at i = 0
l  current = [item]
l  as long as the level i is full

l  merge current with Ai using merge
procedure

l  store to current
l  Ai = empty
l  i++

l  Ai = current

Another set data structure
l  Insert

l  starting at i = 0
l  current = [item]
l  as long as the level i is full

l  merge current with Ai using merge procedure
l  store to current
l  Ai = empty
l  i++

l  Ai = current

running time?

Another set data structure
l  Insert

l  starting at i = 0
l  current = [item]
l  as long as the level i is full

l  merge current with Ai using merge procedure
l  store to current
l  Ai = empty
l  i++

l  Ai = current

running time?

3/6/12

10

Insert running time
l  Worse case

l  merge at each level
l  2 + 4 + 8 + … + n/2 + n = O(n)

l  There are many insertions that won’t fall into this
worse case

l  What is the amortized worse case for insertion?

insert: amortized analysis

l  Consider inserting n numbers
l  how many times will A0 be empty?
l  how many times will we need to merge with A0?
l  how many times will we need to merge with A1?
l  how many times will we need to merge with A2?
l  …
l  how many times will we need to merge with Alog n?

insert: amortized analysis

l  Consider inserting n numbers
l  how many times will A0 be empty? n/2
l  how many times will we need to merge with A0? n/2
l  how many times will we need to merge with A1? n/4
l  how many times will we need to merge with A2? n/8
l  …
l  how many times will we need to merge with Alog n? 1

cost of each of these steps?

times

insert: amortized analysis

l  Consider inserting n numbers
l  how many times will A0 be empty? n/2 O(1)
l  how many times will we need to merge with A0? n/2 2
l  how many times will we need to merge with A1? n/4 4
l  how many times will we need to merge with A2? n/8 8
l  …
l  how many times will we need to merge with Alog n? 1 n

total cost:

times cost

3/6/12

11

insert: amortized analysis

l  Consider inserting n numbers
l  how many times will A0 be empty? n/2 O(1)
l  how many times will we need to merge with A0? n/2 2
l  how many times will we need to merge with A1? n/4 4
l  how many times will we need to merge with A2? n/8 8
l  …
l  how many times will we need to merge with Alog n? 1 n

total cost: log n levels * O(n) each level
 O(n log n) cost for n inserts
 O(log n) amortized cost!

times cost

Binary heap

l  A binary tree where the value of a parent is
greater than or equal to the value of it’s
children

l  Additional restriction: all levels of the tree are
complete except the last

l  Max heap vs. min heap

Binary heap - operations
l  Maximum(S) - return the largest element in the set

l  ExtractMax(S) – Return and remove the largest element
in the set

l  Insert(S, val) – insert val into the set

l  IncreaseElement(S, x, val) – increase the value of
element x to val

l  BuildHeap(A) – build a heap from an array of elements

Binary heap

How can we represent a heap?

3/6/12

12

Binary heap - references

16

14 10

8

2 4 1

7 9 3

parent ≥ child

complete tree

level does not
indicate size

all nodes in
a heap are
themselves
heaps

Binary heap - array

Binary heap - array

16 14 10 8 7 9 3 2 4 1

1 2 3 4 5 6 7 8 9 10

Binary heap - array

16 14 10 8 7 9 3 2 4 1

1 2 3 4 5 6 7 8 9 10

Left child of A[3]?

3/6/12

13

Binary heap - array

16 14 10 8 7 9 3 2 4 1

1 2 3 4 5 6 7 8 9 10

Left child of A[3]?

2*3 = 6

Binary heap - array

16 14 10 8 7 9 3 2 4 1

1 2 3 4 5 6 7 8 9 10

Parent of A[8]?

Binary heap - array

16 14 10 8 7 9 3 2 4 1

1 2 3 4 5 6 7 8 9 10

Parent of A[8]?

⎣ ⎦ 42/8 =

Binary heap - array

16 14 10 8 7 9 3 2 4 1

1 2 3 4 5 6 7 8 9 10

16

14 10

8

2 4 1

7 9 3

3/6/12

14

Identify the valid heaps

8

[15, 12, 3, 11, 10, 2, 1, 7, 8]

[20, 18, 10, 17, 16, 15, 9, 14, 13]

16

10 15

9 3

