
3/1/12

1

Data Structures

David Kauchak
cs302

Spring 2012

Data Structures
l  What is a data structure?

l  Way of storing data that facilitates particular
operations

l  Dynamic set operations: For a set S
l  Search(S,k) – Does k exist in S?
l  Insert(S,k) – Add k to S
l  Delete(S,x) – Given a pointer/reference, x, to an

elkement, delete it from S
l  Min(S) – Return the smallest element of S
l  Max(S) – Return the largest element of S

Data structures

What are some of the data
structures you’ve seen?

Array

l  Sequential locations in memory in linear order
l  Elements are accessed via index
l  Cost of operations:

l  Search(S,k) –
l  Insert(S,k) –
l  InsertIndex(S,k) –
l  Delete(S,x) –
l  Min(S) –
l  Max(S) –

O(n)
Θ(1) if we leave extra space, Θ(n)

Θ(1)
Θ(n)

Θ(n)
Θ(n)

3/1/12

2

Array

l  Uses?
l  constant time access of particular indices

Linked list

l  Elements are arranged linearly.
l  An element in the list points to the next

element in the list
l  Cost of operations:

l  Search(S,k) –
l  Insert(S,k) –
l  InsertIndex(S,k) –
l  Delete(S,x) –
l  Min(S) –
l  Max(S) –

O(n)
Θ(1)

O(n) or Θ(1) if at index
O(n)

Θ(n)
Θ(n)

Linked list

l  Uses?
l  constant time insertion at the cost of linear time

access

Double linked list

l  Elements are arranged linearly.
l  An element in list points to the next element

and previous element in the list
l  What does the back link get us?
l  Θ(1) deletion (assuming a reference to the

item)

3/1/12

3

Stack

l  LIFO
l  Picture the stack of plates at a buffet
l  Can implement with an array or a linked list

Stack

l  LIFO
l  Picture the stack of plates at a buffet
l  Can implement with an array or a linked list

push(1)

push(2)

push(3)

pop()
pop()
pop()

3

2

1

top

Stack

l  Empty – check if stack is empty
l  Array:
l  Linked list:
l  Runtime: Θ(1)

check if “top” is at index 0
check if “head” pointer is null

Stack

l  Pop – removes the top element from the list
l  check if empty, if so, “underflow”
l  Array:

l  return element at “top” and decrement “top”
l  Linked list:

l  return and remove at front of linked list
l  Runtime:

l  Θ(1)

3/1/12

4

Stack

l  Push – add an element to the list
l  Array:

l  increment “top” and insert element. Must check for
overflow!

l  Linked list:
l  insert element at front of linked list

l  Runtime:
l  Θ(1)

Stack

l  Array or linked list?
l  Array: more memory efficient
l  Linked list: don’t have to worry about “overflow”
l  Other options?

l  ArrayList (expandable array): compromise between
two, but not all operations are O(1)

l  Uses?
l  runtime “stack”
l  graph search algorithms (depth first search)
l  syntactic parsing (i.e. compilers)

Queue

l  FIFO
l  Picture a line at the grocery store

Enqueue(1)

Enqueue(2)

Enqueue(3)

Dequeue()

Dequeue()

Dequeue()

1

2

3

Queue
l  Can implement with:

l  array?
l  singly linked list?
l  doubly linked list?

3/1/12

5

Queue

l  FIFO
l  Can implement with an array, a linked list or a

double linked list
l  Array:

l  keep head an tail indices
l  add to one and remove form the other

l  Linked list
l  keep a head and tail reference
l  add to the tail
l  remove from the head

l  Runtimes?

head tail

Queue

l  Operations
l  Empty – Θ(1)
l  Enqueue – add element to end of queue - Θ(1)
l  Dequeue – remove element from the front of the

queue - Θ(1)
l  Uses?

l  scheduling
l  graph traversal (breadth first search)

