
2/21/12

1

Recurrences

David Kauchak
cs302

Spring 2012

Administrative
l  Talk today
l  Assignment 1

l  for proofs by induction, make sure you make the steps clear:
l  base case
l  inductive case

§  assumption (inductive hypothesis)
§  what you’re trying to prove
§  proof

l  Assignment 2?
l  Assignment 3 out today
l  Latex?
l  My view on homework…

MergeSort MergeSort: Merge
l  Assuming L and R are sorted already, merge

the two to create a single sorted array

2/21/12

2

Merge-Sort
l  Running time?

⎩
⎨
⎧

++
=

otherwise)()()2/(2
small is if

)(
nCnDnT

nc
nT

D(n): cost of splitting (dividing) the data

C(n): cost of merging/combining the data

Merge-Sort
l  Running time?

⎩
⎨
⎧

++
=

otherwise)()()2/(2
small is if

)(
nCnDnT

nc
nT

D(n): cost of splitting (dividing) the data - linear Θ(n)

C(n): cost of merging/combining the data – linear Θ(n)

Merge-Sort
l  Running time?

⎩
⎨
⎧

+
=

otherwise)2/(2
small is if

)(
cnnT

nc
nT

Which is?

Merge-Sort
cn

T(n/2)

⎩
⎨
⎧

+
=

otherwise)2/(2
small is if

)(
cnnT

nc
nT

T(n/2)

2/21/12

3

Merge-Sort
cn

⎩
⎨
⎧

+
=

otherwise)2/(2
small is if

)(
cnnT

nc
nT

T(n/4) T(n/4) T(n/4) T(n/4)

 cn/2 cn/2

Merge-Sort
cn

⎩
⎨
⎧

+
=

otherwise)2/(2
small is if

)(
cnnT

nc
nT

 cn/4 cn/4 cn/4 cn/4

 cn/2 cn/2

T(n/8) T(n/8) T(n/8) T(n/8) T(n/8) T(n/8) T(n/8) T(n/8)

Merge-Sort
cn

⎩
⎨
⎧

+
=

otherwise)2/(2
small is if

)(
cnnT

nc
nT

 cn/4 cn/4 cn/4 cn/4

 cn/2 cn/2

 cn/8 cn/8 cn/8 cn/8 cn/8 cn/8 cn/8 cn/8 …

 c c c c c … c c c c c c

Merge-Sort
cn

⎩
⎨
⎧

+
=

otherwise)2/(2
small is if

)(
cnnT

nc
nT

 cn/4 cn/4 cn/4 cn/4

 cn/2 cn/2

 cn/8 cn/8 cn/8 cn/8 cn/8 cn/8 cn/8 cn/8 …

 c c c c c … c c c c c c

cn

cn

cn

cn

cn

2/21/12

4

Merge-Sort
cn

⎩
⎨
⎧

+
=

otherwise)2/(2
small is if

)(
cnnT

nc
nT

 cn/4 cn/4 cn/4 cn/4

 cn/2 cn/2

 cn/8 cn/8 cn/8 cn/8 cn/8 cn/8 cn/8 cn/8 …

 c c c c c … c c c c c c

cn

cn

cn

cn

cn

Depth?

Merge-Sort
l  We can calculate the depth, by determining when the

recursion gets to down to a small problem size, e.g. 1
l  At each level, we divide by 2

1
2

=d
n

nd =2

nd log2log =

nd log2log =

nd 2log=

Merge-Sort

l  Running time?
l  Each level costs cn
l  log n levels

l  cn log n = Θ(n log n)

⎩
⎨
⎧

+
=

otherwise)2/(2
small is if

)(
cnnT

nc
nT Recurrence

l  A function that is defined with respect to itself
on smaller inputs

nnTnT +=)2/(2)(

nnTnT +=)4/(16)(

2)1(2)(nnTnT +−=

2/21/12

5

Why are we interested in
recurrences?
l  Computational cost of divide and conquer algorithms

l  a subproblems of size n/b
l  D(n) the cost of dividing the data
l  C(n) the cost of recombining the subproblem solutions

l  In general, the runtimes of most recursive algorithms
can be expressed as recurrences

)()()/()(nCnDbnaTnT ++=

The challenge

l  Recurrences are often easy to define
because they mimic the structure of the
program

l  But… they do not directly express the
computational cost, i.e. n, n2, …

l  We want to remove self-recurrence and find a
more understandable form for the function

Three approaches
l  Substitution method: when you have a good

guess of the solution, prove that it’s correct

l  Recursion-tree method: If you don’t have a
good guess, the recursion tree can help. Then
solve with substitution method.

l  Master method: Provides solutions for
recurrences of the form:

)()/()(nfbnaTnT +=

Substitution method

l  Guess the form of the solution
l  Then prove it’s correct by induction

l  Halves the input then constant amount of work

dnTnT +=)2/()(

Guess?

2/21/12

6

Substitution method

l  Guess the form of the solution
l  Then prove it’s correct by induction

l  Halves the input then constant amount of work
l  Similar to binary search:

dnTnT +=)2/()(

Guess: O(log2 n)

Proof?

T (n) = T (n / 2)+ d =O(log2 n)?

Ideas?

Proof?

T (n) = T (n / 2)+ d =O(log2 n)?

Proof by induction!
-  Assume it’s true for smaller T(k)
-  prove that it’s then true for

current T(n)

l  Assume T(k) = O(log2 k) for all k < n
l  Show that T(n) = O(log2 n)

l  From our assumption, T(n/2) = O(log2 n):

l  From the definition of O: T(n/2) ≤ c log2(n/2)

dnTnT +=)2/()(

⎭
⎬
⎫

⎩
⎨
⎧

≥≤≤
=

0 allfor)()(0
such that and constants positive exists there

:)())((
nnncgnf

nc
nfngO

2/21/12

7

l  To prove that T(n) = O(log2 n) we need to identify the
appropriate constants:

dnTnT +=)2/()(

dnTnT +=)2/()(
dnc +≤)2/(log2

! c log2 n" c log2 2+ d

! c log2 n" c+ d

nc 2log≤

if c ≥ d

⎭
⎬
⎫

⎩
⎨
⎧

≥≤≤
=

0 allfor)()(0
such that and constants positive exists there

:)())((
nnncgnf

nc
nfngO

i.e. some constant c such that T(n) ≤ c log2 n

residual

Base case?

l  For an inductive proof we need to show two
things:
l  Assuming it’s true for k < n show it’s true for n
l  Show that it holds for some base case

l  What is the base case in our situation?

⎩
⎨
⎧

+

(1)Θ
=

otherwise)2/(
small is if

)(
dnT

n
nT

l  Guess the solution?
l  At each iteration, does a linear amount of work

(i.e. iterate over the data) and reduces the size by
one at each step

l  O(n2)

l  Assume T(k) = O(k2) for all k < n
l  again, this implies that T(n-1) ≤ c(n-1)2

l  Show that T(n) = O(n2), i.e. T(n) ≤ cn2

nnTnT +−=)1()(nnTnT +−=)1()(
nnc +−≤ 2)1(

nnnc ++−=)12(2

nccncn ++−= 22

2cn≤

if

residual

02 ≤++− nccn
nccn −≤+− 2
nnc −≤+−)12(

12 −
≥
n
nc

n
c

/12
1
−

≥which holds for any
c ≥1 for n ≥1

2/21/12

8

l  Guess the solution?
l  Recurses into 2 sub-problems that are half the

size and performs some operation on all the
elements

l  O(n log n)
l  What if we guess wrong, e.g. O(n2)?

l  Assume T(k) = O(k2) for all k < n
l  again, this implies that T(n/2) ≤ c(n/2)2

l  Show that T(n) = O(n2)

nnTnT +=)2/(2)(nnTnT +=)2/(2)(
nnc +≤ 2)2/(2
ncn += 4/2 2

ncn += 22/1
)2/1(22 ncncn −−=

2cn≤

residual

if

0)2/1(2 ≤−− ncn
02/1 2 ≤+− ncn
2≥cn

overkill?

l  What if we guess wrong, e.g. O(n)?

l  Assume T(k) = O(k) for all k < n
l  again, this implies that T(n/2) ≤ c(n/2)

l  Show that T(n) = O(n)

nnTnT +=)2/(2)(
ncn +≤ 2/2

ncn+=

nnTnT +=)2/(2)(

cn≤
factor of n so we can
just roll it in?

l  What if we guess wrong, e.g. O(n)?

l  Assume T(k) = O(k) for all k < n
l  again, this implies that T(n/2) ≤ c(n/2)

l  Show that T(n) = O(n)

nnTnT +=)2/(2)(
ncn +≤ 2/2

ncn+=

nnTnT +=)2/(2)(

cn≤
factor of n so we can
just roll it in?

Must prove the
exact form!

cn+n ≤ cn ??

2/21/12

9

l  Prove T(n) = O(n log2 n)
l  Assume T(k) = O(k log2 k) for all k < n

l  again, this implies that T(k) = ck log2k
l  Show that T(n) = O(n log2 n)

nnTnT +=)2/(2)(
nncn +≤)2/log(2/2

nnTnT +=)2/(2)(

nncn +−≤)2log(log 22

ncnncn +−≤ 2log residual
ncn 2log≤

if cn ≥ n, c > 1

Changing variables

l  Guesses?
l  We can do a variable change: let m = log2 n

(or n = 2m)

l  Now, let S(m)=T(2m)

nnTnT log)(2)(+=

mTT mm +=)2(2)2(2/

mmSmS +=)2/(2)(

Changing variables

l  Guess?

mmTmS +=)2/(2)(

)log()(mmOmS =

)log()()2()(mmOmSTnT m ===

)loglog(log)(nnOnT =

substituting m=log n

Recursion Tree

l  Guessing the answer can be difficult

l  The recursion tree approach
l  Draw out the cost of the tree at each level of recursion
l  Sum up the cost of the levels of the tree

l  Find the cost of each level with respect to the depth
l  Figure out the depth of the tree
l  Figure out (or bound) the number of leaves

l  Verify your answer using the substitution method

2)4/(3)(nnTnT +=

cnnTnTnT ++=)3/2(2)3/()(

2/21/12

10

2)4/(3)(nnTnT +=

cn2

T(n/4) T(n/4) T(n/4)

cn2

cost 2)4/(3)(nnTnT +=

cn2 cn2

cost

2

4
⎟
⎠

⎞
⎜
⎝

⎛ nc
2

4
⎟
⎠

⎞
⎜
⎝

⎛ nc
2

4
⎟
⎠

⎞
⎜
⎝

⎛ nc

⎟
⎠

⎞
⎜
⎝

⎛
16
nT ⎟

⎠

⎞
⎜
⎝

⎛
16
nT ⎟

⎠

⎞
⎜
⎝

⎛
16
nT ⎟

⎠

⎞
⎜
⎝

⎛
16
nT ⎟

⎠

⎞
⎜
⎝

⎛
16
nT ⎟

⎠

⎞
⎜
⎝

⎛
16
nT ⎟

⎠

⎞
⎜
⎝

⎛
16
nT ⎟

⎠

⎞
⎜
⎝

⎛
16
nT ⎟

⎠

⎞
⎜
⎝

⎛
16
nT

3/16cn2

2)4/(3)(nnTnT +=

cn2 cn2

cost

2

4
⎟
⎠

⎞
⎜
⎝

⎛ nc
2

4
⎟
⎠

⎞
⎜
⎝

⎛ nc
2

4
⎟
⎠

⎞
⎜
⎝

⎛ nc

2

16
⎟
⎠

⎞
⎜
⎝

⎛ nc

3/16cn2

2

16
⎟
⎠

⎞
⎜
⎝

⎛ nc
2

16
⎟
⎠

⎞
⎜
⎝

⎛ nc
2

16
⎟
⎠

⎞
⎜
⎝

⎛ nc
2

16
⎟
⎠

⎞
⎜
⎝

⎛ nc
2

16
⎟
⎠

⎞
⎜
⎝

⎛ nc
2

16
⎟
⎠

⎞
⎜
⎝

⎛ nc
2

16
⎟
⎠

⎞
⎜
⎝

⎛ nc
2

16
⎟
⎠

⎞
⎜
⎝

⎛ nc (3/16)2cn2

What is the cost at each level? 2

16
3 cn

d

⎟
⎠

⎞
⎜
⎝

⎛

What is the depth of the tree?
l  At each level, the size of the data is divided

by 4

1
4

=d
n

0
4

log =⎟
⎠

⎞
⎜
⎝

⎛
d
n

04loglog =− dn

nd log4log =

nd 4log=

2/21/12

11

2)4/(3)(nnTnT +=

cn2

2

4
⎟
⎠

⎞
⎜
⎝

⎛ nc
2

4
⎟
⎠

⎞
⎜
⎝

⎛ nc
2

4
⎟
⎠

⎞
⎜
⎝

⎛ nc

2

16
⎟
⎠

⎞
⎜
⎝

⎛ nc
2

16
⎟
⎠

⎞
⎜
⎝

⎛ nc
2

16
⎟
⎠

⎞
⎜
⎝

⎛ nc
2

16
⎟
⎠

⎞
⎜
⎝

⎛ nc
2

16
⎟
⎠

⎞
⎜
⎝

⎛ nc
2

16
⎟
⎠

⎞
⎜
⎝

⎛ nc
2

16
⎟
⎠

⎞
⎜
⎝

⎛ nc
2

16
⎟
⎠

⎞
⎜
⎝

⎛ nc
2

16
⎟
⎠

⎞
⎜
⎝

⎛ nc

How many leaves are there?

)1(T

How many leaves?

l  How many leaves are there in a complete
ternary tree of depth d?

nd 4log33 =

Total cost

)3(
16
3...

16
3

16
3)(4log2

1
2

2
22 n

d

cncncncnnT Θ+⎟
⎠

⎞
⎜
⎝

⎛++⎟
⎠

⎞
⎜
⎝

⎛++=
−

)3(
16
3

4
4

log
1log

0

2 n
n

i

i

cn Θ+⎟
⎠

⎞
⎜
⎝

⎛= ∑
−

=

x
x

k
k

−
=∑

∞

= 1
1

0

let x = 3/16

)3(
16
3

4log

0

2 n

i

i

cn Θ+⎟
⎠

⎞
⎜
⎝

⎛< ∑
∞

=

)3(
)16/3(1

1
4log2 ncn Θ+

−
=

)3(
13
16

4log2 ncn Θ+= ?

Total cost)3(
13
16)(4log2 ncnnT Θ+=

nn 4log
44 3loglog 43 =

3loglog 444 n=
34log

4log4 n=
3log4n=

)(
13
16)(3log2 4ncnnT Θ+=

)()(2nOnT =

2/21/12

12

Verify solution using substitution

l  Assume T(k) = O(k2) for all k < n
l  Show that T(n) = O(n2)

l  Given that T(n/4) = O((n/4)2), then

l  T(n/4) ≤ c(n/4)2

2)4/(3)(nnTnT +=

⎭
⎬
⎫

⎩
⎨
⎧

≥≤≤
=

0 allfor)()(0
such that and constants positive exists there

:)())((
nnncgnf

nc
nfngO

l  To prove that Show that T(n) = O(n2) we need to
identify the appropriate constants:

2)4/(3)(nnTnT +=
22)4/(3 nnc +≤

2cn≤

if

⎭
⎬
⎫

⎩
⎨
⎧

≥≤≤
=

0 allfor)()(0
such that and constants positive exists there

:)())((
nnncgnf

nc
nfngO

i.e. some constant c such that T(n) ≤ cn2

2)4/(3)(nnTnT +=

22 16/3 ncn +=

13
16

≥c

Master Method
l  Provides solutions to the recurrences of the form:

)()/()(nfbnaTnT +=

)()(then ,0for)()(if loglog aa bb nnTnOnf Θ=> = − εε

)log()(then),()(if loglog nnnTnnf aa bb Θ=Θ=

1for)()/(and 0for)()(if log <≤> Ω= + cncfbnafnnf ab εε

))(()(then nfnT Θ=

nnTnT +=)4/(16)(

 a =
 b =
f(n) =

16
4
n

abnlog
2

16log4

n
n

=

=

?)(is
?)(is

?)(is

2

2

2

ε

ε

+

−

Ω=

Θ=

=

nn
nn
nOn

)()(then ,0for)()(if loglog aa bb nnTnOnf Θ=> = − εε

)log()(then),()(if loglog nnnTnnf aa bb Θ=Θ=

1for)()/(and 0for)()(if log <≤> Ω= + cncfbnafnnf ab εε

))(()(then nfnT Θ=

Case 1: Θ(n2)

2/21/12

13

nnTnT 2)2/()(+=

 a =
 b =
f(n) =

1
2
2n

abnlog
0

1log2

n
n

=

=

?)(2 is
?)(2 is

?)(2 is

0

0

0

ε

ε

+

−

Ω=

Θ=

=

n
n
nO

n

n

n

)()(then ,0for)()(if loglog aa bb nnTnOnf Θ=> = − εε

)log()(then),()(if loglog nnnTnnf aa bb Θ=Θ=

1for)()/(and 0for)()(if log <≤> Ω= + cncfbnafnnf ab εε

))(()(then nfnT Θ=

Case 3?
?1for 22 is 2/ <≤ cc nn

nnTnT 2)2/()(+=
)()(then ,0for)()(if loglog aa bb nnTnOnf Θ=> = − εε

)log()(then),()(if loglog nnnTnnf aa bb Θ=Θ=

1for)()/(and 0for)()(if log <≤> Ω= + cncfbnafnnf ab εε

))(()(then nfnT Θ=

T(n) = Θ(2n)

?1for 22 is 2/ <≤ cc nn

Let c = 1/2

nn 2)2/1(2 2/ ≤
nn 222 12/ −≤
12/ 22 −≤ nn

nnTnT +=)2/(2)(

 a =
 b =
f(n) =

2
2
n

abnlog
1

2log2

n
n

=

=

?)(is
?)(is

?)(is

1

1

1

ε

ε

+

−

Ω=

Θ=

=

nn
nn
nOn

)()(then ,0for)()(if loglog aa bb nnTnOnf Θ=> = − εε

)log()(then),()(if loglog nnnTnnf aa bb Θ=Θ=

1for)()/(and 0for)()(if log <≤> Ω= + cncfbnafnnf ab εε

))(()(then nfnT Θ=

Case 2: Θ(n log n)

!)4/(16)(nnTnT +=

 a =
 b =
f(n) =

16
4
n!

abnlog
2

16log4

n
n

=

=

?)(! is
?)(! is

?)(! is

2

2

2

ε

ε

+

−

Ω=

Θ=

=

nn
nn
nOn

)()(then ,0for)()(if loglog aa bb nnTnOnf Θ=> = − εε

)log()(then),()(if loglog nnnTnnf aa bb Θ=Θ=

1for)()/(and 0for)()(if log <≤> Ω= + cncfbnafnnf ab εε

))(()(then nfnT Θ=

Case 3?
?1for 416 is <≤ ccn!)!(n/

2/21/12

14

!)4/(16)(nnTnT +=
)()(then ,0for)()(if loglog aa bb nnTnOnf Θ=> = − εε

)log()(then),()(if loglog nnnTnnf aa bb Θ=Θ=

1for)()/(and 0for)()(if log <≤> Ω= + cncfbnafnnf ab εε

))(()(then nfnT Θ=

T(n) = Θ(n!)
Let c = 1/2

?1for 416 is <≤ ccn!)!(n/

!2/1! ncn =
)!2/(n>

!2/1)!2/()!4/(16 nnn <≤

therefore,

nnTnT log)2/(2)(+=

 a =
 b =
f(n) =

2
logn

abnlog

n
n
n

=

=

=
2/1

2

2

2log

2log

?)(log is
?)(log is

?)(log is

2/1

2/1

2/1

ε

ε

+

−

Ω=

Θ=

=

nn
nn
nOn

)()(then ,0for)()(if loglog aa bb nnTnOnf Θ=> = − εε

)log()(then),()(if loglog nnnTnnf aa bb Θ=Θ=

1for)()/(and 0for)()(if log <≤> Ω= + cncfbnafnnf ab εε

))(()(then nfnT Θ=

Case 1: Θ()

2

n

nnTnT +=)2/(4)(

 a =
 b =
f(n) =

4
2
n

abnlog
2

4log2

n
n

=

=

?)(is
?)(is

?)(is

2

2

2

ε

ε

+

−

Ω=

Θ=

=

nn
nn
nOn

)()(then ,0for)()(if loglog aa bb nnTnOnf Θ=> = − εε

)log()(then),()(if loglog nnnTnnf aa bb Θ=Θ=

1for)()/(and 0for)()(if log <≤> Ω= + cncfbnafnnf ab εε

))(()(then nfnT Θ=

Case 1: Θ(n2)

Why does the master
method work?

)()/()(nfbnaTnT +=

)(nf

a

)/(bnf)/(bnf)/(bnf

)/(2bnf

a

)/(2bnf)/(2bnf)/(2bnf

a

)/(2bnf)/(2bnf)/(2bnf

a

)/(2bnf)/(2bnf

)(nf

)/(bnaf

)/(22 bnfa

2/21/12

15

What is the depth of the tree?
l  At each level, the size of the data is divided

by b

1=db
n

0log =⎟
⎠

⎞
⎜
⎝

⎛
db
n

04loglog =− bn

nbd loglog =

nd blog=

How many leaves?

l  How many leaves are there in a complete
a-ary tree of depth d?

nd baa log=
abnlog=

Total cost

)()/(...)/()/()()(3log1122 ann bnbnfabnfabnafncfnT Θ+++++= −−

)()/(log
1log

0

a
n

i

ii b
b

nbnfa Θ+= ∑
−

=

)()(then ,0for)()(if loglog aa bb nnTnOnf Θ=> = − εε

)log()(then),()(if loglog nnnTnnf aa bb Θ=Θ=

1for)()/(and 0for)()(if log <≤> Ω= + cncfbnafnnf ab εε

))(()(then nfnT Θ=

Case 1: cost is dominated by the cost of the leaves

)()/(log
1log

0

a
n

i

ii b
b

nbnfa Θ<= ∑
−

=

Total cost

)()/(...)/()/()()(3log1122 ann bnbnfabnfabnafncfnT Θ+++++= −−

)()/(log
1log

0

a
n

i

ii b
b

nbnfa Θ+= ∑
−

=

)()(then ,0for)()(if loglog aa bb nnTnOnf Θ=> = − εε

)log()(then),()(if loglog nnnTnnf aa bb Θ=Θ=

1for)()/(and 0for)()(if log <≤> Ω= + cncfbnafnnf ab εε

))(()(then nfnT Θ=

Case 2: cost is evenly distributed across tree

As we saw with mergesort, log n levels to the
tree and at each level f(n) work

2/21/12

16

Total cost

)()/(...)/()/()()(3log1122 ann bnbnfabnfabnafncfnT Θ+++++= −−

)()/(log
1log

0

a
n

i

ii b
b

nbnfa Θ+= ∑
−

=

)()(then ,0for)()(if loglog aa bb nnTnOnf Θ=> = − εε

)log()(then),()(if loglog nnnTnnf aa bb Θ=Θ=

1for)()/(and 0for)()(if log <≤> Ω= + cncfbnafnnf ab εε

))(()(then nfnT Θ=

Case 3: cost is dominated by the cost of the root

)(nf

a

Don’t shoot the messenger

l  Why do we care about substitution method
and recurrence tree method? Master method
is much easier.

l  Some recurrences don’t fit the mold!

cnnTnTnT ++=)3/2(2)3/()(

Other forms of the master method

⎪
⎩

⎪
⎨

⎧

<

=

>

=

adnO
adnnO
adnO

nT

b
a

b
d

b
d

b log if)(
log if)log(
log if)(

)(
log

)()/()(dnObnaTnT +=

Recurrences

dnTnT +=)3/(2)(

nnTnT log)1()(+−=

nnTnT +=)7/(7)(

3)2/(8)(nnTnT +=

)()(then ,0for)()(if loglog aa bb nnTnOnf Θ=> = − εε

)log()(then),()(if loglog nnnTnnf aa bb Θ=Θ=

))(()(then nfnT Θ=

1for)()/(and 0for)()(if log <≤> Ω= + cncfbnafnnf ab εε

