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Recurrences 

David Kauchak  
cs302 

Spring 2012 

Administrative 
l  Talk today 
l  Assignment 1 

l  for proofs by induction, make sure you make the steps clear: 
l  base case 
l  inductive case 

§  assumption (inductive hypothesis) 
§  what you’re trying to prove 
§  proof 

l  Assignment 2? 
l  Assignment 3 out today 
l  Latex? 
l  My view on homework… 

MergeSort MergeSort: Merge 
l  Assuming L and R are sorted already, merge  

the two to create a single sorted array 



2/21/12 

2 

Merge-Sort 
l  Running time? 
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D(n): cost of splitting (dividing) the data 

C(n): cost of merging/combining the data 

Merge-Sort 
l  Running time? 
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D(n): cost of splitting (dividing) the data - linear Θ(n)  

C(n): cost of merging/combining the data – linear Θ(n)  

Merge-Sort 
l  Running time? 
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Which is? 

Merge-Sort 
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T(n/2) 
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Merge-Sort 
cn 
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T(n/4) T(n/4) T(n/4) T(n/4) 

  cn/2   cn/2 

Merge-Sort 
cn 

⎩
⎨
⎧

+
=

otherwise)2/(2
small is  if

)(
cnnT

nc
nT

 cn/4  cn/4  cn/4  cn/4 

  cn/2   cn/2 

T(n/8) T(n/8) T(n/8) T(n/8) T(n/8) T(n/8) T(n/8) T(n/8) 
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Merge-Sort 
cn 

⎩
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 cn/4  cn/4  cn/4  cn/4 

  cn/2   cn/2 

 cn/8  cn/8  cn/8  cn/8  cn/8  cn/8  cn/8  cn/8 …
 

 c   c   c   c   c           …       c   c   c   c   c   c 

cn 

cn 

cn 

cn 

cn 

Depth? 

Merge-Sort 
l  We can calculate the depth, by determining when the 

recursion gets to down to a small problem size, e.g. 1 
l  At each level, we divide by 2 

1
2

=d
n

nd =2

nd log2log =

nd log2log =

nd 2log=

Merge-Sort 

l  Running time? 
l  Each level costs cn 
l  log n levels 

l  cn log n = Θ(n log n ) 

⎩
⎨
⎧

+
=

otherwise)2/(2
small is  if

)(
cnnT

nc
nT Recurrence 

l  A function that is defined with respect to itself 
on smaller inputs 

nnTnT += )2/(2)(

nnTnT += )4/(16)(

2)1(2)( nnTnT +−=
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Why are we interested in 
recurrences? 
l  Computational cost of divide and conquer algorithms 

l  a subproblems of size n/b 
l  D(n) the cost of dividing the data 
l  C(n) the cost of recombining the subproblem solutions 

l  In general, the runtimes of most recursive algorithms 
can be expressed as recurrences 

)()()/()( nCnDbnaTnT ++=

The challenge 

l  Recurrences are often easy to define 
because they mimic the structure of the 
program 

l  But… they do not directly express the 
computational cost, i.e. n, n2, … 

l  We want to remove self-recurrence and find a 
more understandable form for the function 

Three approaches 
l  Substitution method: when you have a good 

guess of the solution, prove that it’s correct 

l  Recursion-tree method: If you don’t have a 
good guess, the recursion tree can help.  Then 
solve with substitution method. 

l  Master method: Provides solutions for 
recurrences of the form: 

)()/()( nfbnaTnT +=

Substitution method 

l  Guess the form of the solution 
l  Then prove it’s correct by induction 
 
 
 
l  Halves the input then constant amount of work 

dnTnT += )2/()(

Guess? 
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Substitution method 

l  Guess the form of the solution 
l  Then prove it’s correct by induction 
 
 
 
l  Halves the input then constant amount of work 
l  Similar to binary search: 

dnTnT += )2/()(

Guess: O(log2 n) 

Proof? 

T (n) = T (n / 2)+ d =O(log2 n)?

Ideas? 

Proof? 

T (n) = T (n / 2)+ d =O(log2 n)?

Proof by induction! 
-  Assume it’s true for smaller T(k) 
-  prove that it’s then true for 

current T(n) 

l  Assume T(k) = O(log2 k)  for all k < n 
l  Show that T(n) = O(log2 n) 

l  From our assumption, T(n/2) = O(log2 n): 

l  From the definition of O: T(n/2) ≤ c log2(n/2) 

dnTnT += )2/()(

⎭
⎬
⎫

⎩
⎨
⎧

≥≤≤
=

0 allfor  )()(0
such that  and  constants positive exists there

:)())((
nnncgnf
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nfngO
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l  To prove that T(n) = O(log2 n) we need to identify the 
appropriate constants: 

dnTnT += )2/()(

dnTnT += )2/()(
dnc +≤ )2/(log2

! c log2 n" c log2 2+ d

! c log2 n" c+ d

nc 2log≤

if c ≥ d 

⎭
⎬
⎫

⎩
⎨
⎧

≥≤≤
=

0 allfor  )()(0
such that  and  constants positive exists there

:)())((
nnncgnf

nc
nfngO

i.e. some constant c such that T(n) ≤ c log2 n 

residual 

Base case? 

l  For an inductive proof we need to show two 
things: 
l  Assuming it’s true for k < n show it’s true for n 
l  Show that it holds for some base case 

l  What is the base case in our situation? 

⎩
⎨
⎧

+

(1)Θ
=

otherwise)2/(
small is  if

)(
dnT

n
nT

l  Guess the solution? 
l  At each iteration, does a linear amount of work 

(i.e. iterate over the data) and reduces the size by 
one at each step 

l  O(n2) 

l  Assume T(k) = O(k2)  for all k < n 
l  again, this implies that T(n-1) ≤ c(n-1)2 

l  Show that T(n) = O(n2), i.e. T(n) ≤ cn2 

nnTnT +−= )1()( nnTnT +−= )1()(
nnc +−≤ 2)1(

nnnc ++−= )12( 2

nccncn ++−= 22

2cn≤

if 

residual 

02 ≤++− nccn
nccn −≤+− 2
nnc −≤+− )12(

12 −
≥
n
nc

n
c

/12
1
−

≥which holds for any 
c ≥1 for n ≥1 
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l  Guess the solution? 
l  Recurses into 2 sub-problems that are half the 

size and performs some operation on all the 
elements 

l  O(n log n) 
l  What if we guess wrong, e.g. O(n2)? 

l  Assume T(k) = O(k2)  for all k < n 
l  again, this implies that T(n/2) ≤ c(n/2)2 

l  Show that T(n) = O(n2) 

nnTnT += )2/(2)( nnTnT += )2/(2)(
nnc +≤ 2)2/(2
ncn += 4/2 2

ncn += 22/1
)2/1( 22 ncncn −−=

2cn≤

residual 

if 

0)2/1( 2 ≤−− ncn
02/1 2 ≤+− ncn
2≥cn

overkill? 

l  What if we guess wrong, e.g. O(n)? 

l  Assume T(k) = O(k)  for all k < n 
l  again, this implies that T(n/2) ≤ c(n/2) 

l  Show that T(n) = O(n) 

nnTnT += )2/(2)(
ncn +≤ 2/2

ncn+=

nnTnT += )2/(2)(

cn≤
factor of n so we can 
just roll it in? 

l  What if we guess wrong, e.g. O(n)? 

l  Assume T(k) = O(k)  for all k < n 
l  again, this implies that T(n/2) ≤ c(n/2) 

l  Show that T(n) = O(n) 

nnTnT += )2/(2)(
ncn +≤ 2/2

ncn+=

nnTnT += )2/(2)(

cn≤
factor of n so we can 
just roll it in? 

Must prove the 
exact form! 

cn+n ≤ cn ?? 
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l  Prove T(n) = O(n log2 n) 
l  Assume T(k) = O(k log2 k)  for all k < n 

l  again, this implies that T(k) = ck log2k 
l  Show that T(n) = O(n log2 n) 

nnTnT += )2/(2)(
nncn +≤ )2/log(2/2

nnTnT += )2/(2)(

nncn +−≤ )2log(log 22

ncnncn +−≤ 2log residual 
ncn 2log≤

if cn ≥ n, c > 1 

Changing variables 

l  Guesses? 
l  We can do a variable change:  let m = log2 n  

(or n = 2m) 

l  Now, let S(m)=T(2m) 

nnTnT log)(2)( +=

mTT mm += )2(2)2( 2/

mmSmS += )2/(2)(

Changing variables 

l  Guess? 

mmTmS += )2/(2)(

)log()( mmOmS =

)log()()2()( mmOmSTnT m ===

)loglog(log)( nnOnT =

substituting m=log n 

Recursion Tree 

l  Guessing the answer can be difficult 

l  The recursion tree approach 
l  Draw out the cost of the tree at each level of recursion 
l  Sum up the cost of the levels of the tree 

l  Find the cost of each level with respect to the depth 
l  Figure out the depth of the tree 
l  Figure out (or bound) the number of leaves 

l  Verify your answer using the substitution method 

2)4/(3)( nnTnT +=

cnnTnTnT ++= )3/2(2)3/()(
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2)4/(3)( nnTnT +=

cn2 

T(n/4 ) T(n/4 ) T(n/4 ) 

cn2 

cost 2)4/(3)( nnTnT +=

cn2 cn2 
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2)4/(3)( nnTnT +=
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What is the cost at each level? 2

16
3 cn

d

⎟
⎠

⎞
⎜
⎝

⎛

What is the depth of the tree? 
l  At each level, the size of the data is divided 

by 4 

1
4

=d
n

0
4

log =⎟
⎠

⎞
⎜
⎝

⎛
d
n

04loglog =− dn

nd log4log =

nd 4log=
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2)4/(3)( nnTnT +=

cn2 

2
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⎜
⎝

⎛ nc
2

4
⎟
⎠

⎞
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⎠

⎞
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⎜
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⎠
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⎠

⎞
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⎛ nc

How many leaves are there? 

)1(T

How many leaves? 

l  How many leaves are there in a complete 
ternary tree of depth d? 

nd 4log33 =

Total cost 

)3(
16
3...

16
3

16
3)( 4log2

1
2

2
22 n

d

cncncncnnT Θ+⎟
⎠

⎞
⎜
⎝

⎛++⎟
⎠

⎞
⎜
⎝

⎛++=
−

)3(
16
3

4
4

log
1log

0

2 n
n

i

i

cn Θ+⎟
⎠

⎞
⎜
⎝

⎛= ∑
−

=

x
x

k
k

−
=∑

∞

= 1
1

0

let x = 3/16 

)3(
16
3

4log

0

2 n

i

i

cn Θ+⎟
⎠

⎞
⎜
⎝

⎛< ∑
∞

=

)3(
)16/3(1

1
4log2 ncn Θ+

−
=

)3(
13
16

4log2 ncn Θ+= ? 

Total cost )3(
13
16)( 4log2 ncnnT Θ+=

nn 4log
44 3loglog 43 =

3loglog 444 n=
34log

4log4 n=
3log4n=

)(
13
16)( 3log2 4ncnnT Θ+=

)()( 2nOnT =
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Verify solution using substitution 

l  Assume T(k) = O(k2)  for all k < n 
l  Show that T(n) = O(n2) 

l  Given that T(n/4) = O((n/4)2), then 

l  T(n/4) ≤ c(n/4)2 

2)4/(3)( nnTnT +=

⎭
⎬
⎫

⎩
⎨
⎧

≥≤≤
=

0 allfor  )()(0
such that  and  constants positive exists there

:)())((
nnncgnf

nc
nfngO

l  To prove that Show that T(n) = O(n2) we need to 
identify the appropriate constants: 

2)4/(3)( nnTnT +=
22)4/(3 nnc +≤

2cn≤

if 

⎭
⎬
⎫

⎩
⎨
⎧

≥≤≤
=

0 allfor  )()(0
such that  and  constants positive exists there

:)())((
nnncgnf

nc
nfngO

i.e. some constant c such that T(n) ≤ cn2 

2)4/(3)( nnTnT +=

22 16/3 ncn +=

13
16

≥c

Master Method 
l  Provides solutions to the recurrences of the form: 

)()/()( nfbnaTnT +=

)()( then ,0for )()( if loglog aa bb nnTnOnf Θ=> = − εε

)log()( then ),()( if loglog nnnTnnf aa bb Θ=Θ=

1for  )()/( and 0for )()( if log <≤> Ω= + cncfbnafnnf ab εε

))(()(then nfnT Θ=

nnTnT += )4/(16)(

  a   =  
  b   = 
f(n) = 

16 
4 
n 

abnlog
2

16log4

n
n

=

=

?)( is
?)( is

?)( is

2

2

2

ε

ε

+

−

Ω=

Θ=

=

nn
nn
nOn

)()( then ,0for )()( if loglog aa bb nnTnOnf Θ=> = − εε

)log()( then ),()( if loglog nnnTnnf aa bb Θ=Θ=

1for  )()/( and 0for )()( if log <≤> Ω= + cncfbnafnnf ab εε

))(()(then nfnT Θ=

Case 1:  Θ(n2)  
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nnTnT 2)2/()( +=

  a   =  
  b   = 
f(n) = 

1 
2 
2n 

abnlog
0

1log2

n
n

=

=

?)(2 is
?)(2 is

?)(2 is

0

0

0

ε

ε

+

−

Ω=

Θ=

=

n
n
nO

n

n

n

)()( then ,0for )()( if loglog aa bb nnTnOnf Θ=> = − εε

)log()( then ),()( if loglog nnnTnnf aa bb Θ=Θ=

1for  )()/( and 0for )()( if log <≤> Ω= + cncfbnafnnf ab εε

))(()(then nfnT Θ=

Case 3?  
?1for  22 is 2/ <≤ cc nn

nnTnT 2)2/()( +=
)()( then ,0for )()( if loglog aa bb nnTnOnf Θ=> = − εε

)log()( then ),()( if loglog nnnTnnf aa bb Θ=Θ=

1for  )()/( and 0for )()( if log <≤> Ω= + cncfbnafnnf ab εε

))(()(then nfnT Θ=

T(n) = Θ(2n)  

?1for  22 is 2/ <≤ cc nn

Let c = 1/2 

nn 2)2/1(2 2/ ≤
nn 222 12/ −≤
12/ 22 −≤ nn

nnTnT += )2/(2)(

  a   =  
  b   = 
f(n) = 

2 
2 
n 

abnlog
1

2log2

n
n

=

=

?)( is
?)( is

?)( is

1

1

1

ε

ε

+

−

Ω=

Θ=

=

nn
nn
nOn

)()( then ,0for )()( if loglog aa bb nnTnOnf Θ=> = − εε

)log()( then ),()( if loglog nnnTnnf aa bb Θ=Θ=

1for  )()/( and 0for )()( if log <≤> Ω= + cncfbnafnnf ab εε

))(()(then nfnT Θ=

Case 2:  Θ(n log n)  

!)4/(16)( nnTnT +=

  a   =  
  b   = 
f(n) = 

16 
4 
n! 

abnlog
2

16log4

n
n

=

=

?)(! is
?)(! is

?)(! is

2

2

2

ε

ε

+

−

Ω=

Θ=

=

nn
nn
nOn

)()( then ,0for )()( if loglog aa bb nnTnOnf Θ=> = − εε

)log()( then ),()( if loglog nnnTnnf aa bb Θ=Θ=

1for  )()/( and 0for )()( if log <≤> Ω= + cncfbnafnnf ab εε

))(()(then nfnT Θ=

Case 3?  
?1for  416 is <≤ ccn!)!(n/
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!)4/(16)( nnTnT +=
)()( then ,0for )()( if loglog aa bb nnTnOnf Θ=> = − εε

)log()( then ),()( if loglog nnnTnnf aa bb Θ=Θ=

1for  )()/( and 0for )()( if log <≤> Ω= + cncfbnafnnf ab εε

))(()(then nfnT Θ=

T(n) = Θ(n!)  
Let c = 1/2 

?1for  416 is <≤ ccn!)!(n/

!2/1! ncn =
)!2/(n>

!2/1)!2/()!4/(16 nnn <≤

therefore, 

nnTnT log)2/(2)( +=

  a   =  
  b   = 
f(n) = 

2 
logn 

abnlog

n
n
n

=

=

=
2/1

2

2

2log

2log

?)(log is
?)(log is

?)(log is

2/1

2/1

2/1

ε

ε

+

−

Ω=

Θ=

=

nn
nn
nOn

)()( then ,0for )()( if loglog aa bb nnTnOnf Θ=> = − εε

)log()( then ),()( if loglog nnnTnnf aa bb Θ=Θ=

1for  )()/( and 0for )()( if log <≤> Ω= + cncfbnafnnf ab εε

))(()(then nfnT Θ=

Case 1:  Θ(   )  

2

n

nnTnT += )2/(4)(

  a   =  
  b   = 
f(n) = 

4 
2 
n 

abnlog
2

4log2

n
n

=

=

?)( is
?)( is

?)( is

2

2

2

ε

ε

+

−

Ω=

Θ=

=

nn
nn
nOn

)()( then ,0for )()( if loglog aa bb nnTnOnf Θ=> = − εε

)log()( then ),()( if loglog nnnTnnf aa bb Θ=Θ=

1for  )()/( and 0for )()( if log <≤> Ω= + cncfbnafnnf ab εε

))(()(then nfnT Θ=

Case 1:  Θ(n2)  

Why does the master 
method work? 

)()/()( nfbnaTnT +=

)(nf

a 

)/( bnf )/( bnf )/( bnf

)/( 2bnf

a 

)/( 2bnf )/( 2bnf )/( 2bnf

a 

)/( 2bnf )/( 2bnf )/( 2bnf

a 

)/( 2bnf )/( 2bnf

)(nf

)/( bnaf

)/( 22 bnfa
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What is the depth of the tree? 
l  At each level, the size of the data is divided 

by b 

1=db
n

0log =⎟
⎠

⎞
⎜
⎝

⎛
db
n

04loglog =− bn

nbd loglog =

nd blog=

How many leaves? 

l  How many leaves are there in a complete  
a-ary tree of depth d? 

nd baa log=
abnlog=

Total cost 

)()/(...)/()/()()( 3log1122 ann bnbnfabnfabnafncfnT Θ+++++= −−

)()/( log
1log

0

a
n

i

ii b
b

nbnfa Θ+= ∑
−

=

)()( then ,0for )()( if loglog aa bb nnTnOnf Θ=> = − εε

)log()( then ),()( if loglog nnnTnnf aa bb Θ=Θ=

1for  )()/( and 0for )()( if log <≤> Ω= + cncfbnafnnf ab εε

))(()(then nfnT Θ=

Case 1: cost is dominated by the cost of the leaves 

)()/( log
1log

0

a
n

i

ii b
b

nbnfa Θ<= ∑
−

=

Total cost 

)()/(...)/()/()()( 3log1122 ann bnbnfabnfabnafncfnT Θ+++++= −−

)()/( log
1log

0

a
n

i

ii b
b

nbnfa Θ+= ∑
−

=

)()( then ,0for )()( if loglog aa bb nnTnOnf Θ=> = − εε

)log()( then ),()( if loglog nnnTnnf aa bb Θ=Θ=

1for  )()/( and 0for )()( if log <≤> Ω= + cncfbnafnnf ab εε

))(()(then nfnT Θ=

Case 2: cost is evenly distributed across tree 

As we saw with mergesort, log n levels to the 
tree and at each level f(n) work 
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Total cost 

)()/(...)/()/()()( 3log1122 ann bnbnfabnfabnafncfnT Θ+++++= −−

)()/( log
1log

0

a
n

i

ii b
b

nbnfa Θ+= ∑
−

=

)()( then ,0for )()( if loglog aa bb nnTnOnf Θ=> = − εε

)log()( then ),()( if loglog nnnTnnf aa bb Θ=Θ=

1for  )()/( and 0for )()( if log <≤> Ω= + cncfbnafnnf ab εε

))(()(then nfnT Θ=

Case 3: cost is dominated by the cost of the root 

)(nf

a 

Don’t shoot the messenger  

l  Why do we care about substitution method 
and recurrence tree method?  Master method 
is much easier. 

l  Some recurrences don’t fit the mold! 

cnnTnTnT ++= )3/2(2)3/()(

Other forms of the master method 

⎪
⎩

⎪
⎨

⎧

<

=

>

=

adnO
adnnO
adnO

nT

b
a

b
d

b
d

b log if)(
log if)log(
log if)(

)(
log

)()/()( dnObnaTnT +=

Recurrences 

dnTnT += )3/(2)(

nnTnT log)1()( +−=

nnTnT += )7/(7)(

3)2/(8)( nnTnT +=

)()( then ,0for )()( if loglog aa bb nnTnOnf Θ=> = − εε

)log()( then ),()( if loglog nnnTnnf aa bb Θ=Θ=

))(()(then nfnT Θ=

1for  )()/( and 0for )()( if log <≤> Ω= + cncfbnafnnf ab εε


