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NP-COMPLETE PROBLEMS 

Admin 

¨  Last assignment out today (yay!) 
¨  Review topics? 

¤ E-mail me if you have others… 

¨  CS senior theses  
¤ Wed 12:30-1:30 (MBH 538) 
¤ Thur 3-4:30 (MBH 104) 

Run-time analysis 

¨  We’ve spent a lot of time in this class putting algorithms 
into specific run-time categories: 
¤ O(log n) 
¤ O(n) 
¤ O(n log n) 
¤ O(n2) 
¤ O(n log log n) 
¤ O(n1.67) 
¤ … 

¨  When I say an algorithm is O(f(n)), what does that 
mean? 

Tractable vs. intractable problems 

What is a “tractable” problem? 
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Tractable vs. intractable problems 

Tractable problems can be solved in 
O(f(n)) where f(n) is a polynomial 

Tractable vs. intractable problems 

What about… 

O(nlog log log log n)? 

O(n100)? 

Tractable vs. intractable problems 

Technically O(n100) is tractable by our definition 
 
Why don’t we worry about problems like this? 

Tractable vs. intractable problems 

Technically O(n100) is tractable by our definition 
•  Few practical problems result in solutions like this 
•  Once a polynomial time algorithm exists, more 

efficient algorithms are usually found 
•  Polynomial algorithms are amenable to parallel 

computation 
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Solvable vs. unsolvable problems 

What is a “solvable” problem? 

Solvable vs. unsolvable problems 

A problem is solvable if given enough (i.e. 
finite) time you could solve it 

Sorting 

Given n integers, sort them from smallest to largest. 

Tractable/intractable? 
 
Solvable/unsolvable? 

Sorting 

Given n integers, sort them from smallest to largest. 

Solvable and tractable: 
Mergesort: Θ(n log n )	
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Enumerating all subsets 

Given a set of n items, enumerate all possible 
subsets. 

Tractable/intractable? 
 
Solvable/unsolvable? 

Enumerating all subsets 

Given a set of n items, enumerate all possible 
subsets. 

Solvable, but intractable: Θ(2n) subsets 
 
For large n this will take a very, very long time	
  

Halting problem 

Given an arbitrary algorithm/program and a 
particular input, will the program terminate? 

Tractable/intractable? 
 
Solvable/unsolvable? 

Halting problem 

Given an arbitrary algorithm/program and a 
particular input, will the program terminate? 

Unsolvable L 
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Integer solution? 

Given a polynomial equation, are there integer values 
of the variables such that the equation is true? 

Tractable/intractable? 
 
Solvable/unsolvable? 

x3yz+ 2y4z2 ! 7xy5z = 6

Integer solution? 

Given a polynomial equation, are there integer values 
of the variables such that the equation is true? 

x3yz+ 2y4z2 ! 7xy5z = 6

Unsolvable L 

Hamiltonian cycle 

Given an undirected graph G=(V, E), a hamiltonian 
cycle is a cycle that visits every vertex V exactly once 

A 

B 

E 
D 

F 

Hamiltonian cycle 

Given an undirected graph G=(V, E), a hamiltonian 
cycle is a cycle that visits every vertex V exactly once 

A 

B 

E 
D 

F 
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Hamiltonian cycle 

Given an undirected graph G=(V, E), a hamiltonian 
cycle is a cycle that visits every vertex V exactly once 

A 

B 

E 
D 

F 

Hamiltonian cycle 

Given an undirected graph G=(V, E), a hamiltonian 
cycle is a cycle that visits every vertex V exactly once 

A 

B 

E 
D 

F 

Hamiltonian cycle 

Given an undirected graph, does it contain a 
hamiltonian cycle? 

Tractable/intractable? 
 
Solvable/unsolvable? 

Hamiltonian cycle 

Given an undirected graph, does it contain a 
hamiltonian cycle? 

Solvable:  Enumerate all possible paths (i.e. 
include an edge or don’t) check if it’s a 
hamiltonian cycle 

How would we do this check exactly, 
specifically given a graph and a path? 
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Checking hamiltonian cycles Checking hamiltonian cycles 

Make sure the path starts and 
ends at the same vertex and is 
the right length 

Can’t revisit a vertex 

Edge has to be in the graph 

Check if we visited all the vertices 

NP problems 

NP is the set of problems that can be verified in 
polynomial time 

A problem can be verified in polynomial time if you can 
check that a given solution is correct in polynomial time 
 
 
 
 (NP is an abbreviation for non-deterministic polynomial time) 

Checking hamiltonian cycles 

Running time? 

O(V) adjacency matrix 
O(V+E) adjacency list 

What does that say about the 
hamilonian cycle problem? 

It belongs to NP 
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NP problems 

¨  Why might we care about NP problems? 
¤  If we can’t verify the solution in polynomial time then an 

algorithm cannot exist that determines the solution in 
this time (why not?) 

¤ All algorithms with polynomial time solutions are in NP 

¨  The NP problems that are currently not solvable in 
polynomial time could in theory be solved in 
polynomial time 

P and NP 

P 

NP 
Big-O allowed us to group 
algorithms by run-time 
 
Today, we’re talking about sets 
of problems grouped by how 
easy they are to solve 

Reduction function 

Given two problems P1 and P2 a reduction function is a 
function that transforms a problem instance x from an 
instance of problem P1 to a problem of P2, f(x) 
 
such that: a solution to x exists for P1 iff a solution for 
f(x) exists for P2 

f x f(x) 
P1 instance P2 instance 

Reduction function 

¨  Where have we seen reductions before? 
¤ Flow problem reduced to the linear programming 

problem 
¤ All pairs shortest path through a particular vertex 

reduced to single source shortest path 

¨  Why are they useful? 

f x f(x) 
P1 instance P2 instance 
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Reduction function 

 
 
 

f Problem P2 
x f(x) yes 

no 

yes 

no 

Problem P1 

Allow us to solve P1 problems if we have a solver for P2  

f x f(x) 
P1 instance P2 instance 

NP-Complete 

¨  A problem is NP-complete if: 
1.  it can be verified in polynomial time (i.e. in NP) 
2.  any NP-complete problem can be reduced to the 

problem in polynomial time (is NP-hard) 

The hamiltonian cycle problem is NP-complete 

What are the implications of this? 

NP-Complete 

¨  A problem is NP-complete if: 
1.  it can be verified in polynomial time (i.e. in NP) 
2.  any NP-complete problem can be reduced to the 

problem in polynomial time (is NP-hard) 

The hamiltonian cycle problem is NP-complete 

It’s at least as hard as any of the other NP-complete problems  

NP-complete 

¨  If found a polynomial time solution to the hamiltonian 
cycle problem, we would have a polynomial time 
solution to any NP-complete problem 
¤  Take the input of the problem 
¤ Convert it to the hamiltonian cycle problem (by definition, 

we know we can do this in polynomial time) 
¤  Solve it 
¤  If yes output yes, if no, output no 

¨  Similarly, if we found a polynomial time solution to any 
NP-complete problem we’d have a solution to all NP-
complete problems 
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NP-complete problems 

¨  Longest path 
Given a graph G with nonnegative edge weights does a 
simple path exist from s to t with weight at least g? 
 
 

¨  Integer linear programming 
Linear programming with the constraint that the values 
must be integers 

NP-complete problems 

¨  3D matching 
Bipartite matching: given two sets of things and pair 
constraints, find a matching between the sets 
3D matching: given three sets of things and triplet constraints, 
find a matching between the sets 

Figure from Dasgupta et. al 2008 

P vs. NP 

Polynomial time solutions exist 
NP-complete  
(and no polynomial time 
solution currently exists) 

Shortest path 
 
Bipartite matching 
 
Linear programming 
 
Minimum cut 
 
… 

Longest path 
 
3D matching  
 
Integer linear programming 
 
Balanced cut 
 
… 

Proving NP-completeness 

¨  A problem is NP-complete if: 
1.  it can be verified in polynomial time (i.e. in NP) 
2.  any NP-complete problem can be reduced to the 

problem in polynomial time (is NP-hard) 

Ideas? 
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Proving NP-completeness 

Given a problem NEW to show it is NP-Complete 
 
1.  Show that NEW is in NP 

a.  Provide a verifier 
b.  Show that the verifier runs in polynomial time 

2.  Show that all NP-complete problems are reducible to 
NEW in polynomial time 

a.  Describe a reduction function f from a known NP-Complete 
problem to NEW 

b.  Show that f runs in polynomial time 
c.  Show that a solution exists to the NP-Complete problem IFF 

a solution exists to the NEW problem generate by f 

Proving NP-completeness 

¨  Show that a solution exists to the NP-Complete problem IFF a 
solution exists to the NEW problem generate by f 
¤ Assume we have an NP-Complete problem instance that has 

a solution, show that the NEW problem instance generated 
by f has a solution 

¤ Assume we have a problem instance of NEW generated by f 
that has a solution, show that we can derive a solution to the 
NP-Complete problem instance 

¨  Other ways of proving the IFF, but this is often the 
easiest 

Proving NP-completeness 

Why is it sufficient to show that one NP-complete 
problem reduces to the NEW problem? 

Show that all NP-complete problems are 
reducible to NEW in polynomial time 

Proving NP-completeness 

All others can be reduced to NEW by first reducing to 
the one problem, then reducing to NEW.  Two 
polynomial time reductions is still polynomial time! 

Show that all NP-complete problems are 
reducible to NEW in polynomial time 
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Proving NP-completeness 

Show that all NP-complete problems are reducible to 
NEW in polynomial time 

Show that any NP-complete problem is reducible to 
NEW in polynomial time 

Show that NEW is reducible to any NP-complete 
problem in polynomial time 

BE CAREFUL! 

NP-complete: 3-SAT  

¨  A boolean formula is in n-conjunctive normal form (n-CNF) if: 
¤  it is expressed as an AND of clauses 

¤  where each clause is an OR of no more than n variables 

¨  3-SAT: Given a 3-CNF boolean formula, is it satisfiable? 

(a!¬a!¬b)"(c!b!d)"(¬a!¬c!¬d)

3-SAT is an NP-complete problem 

NP-complete: SAT 

Given a boolean formula of n boolean variables joined by 
m connectives (AND, OR or NOT) is there a setting of the 
variables such that the boolean formula evaluate to true? 

((¬(b!¬c)"a)!(a ^ b ^ c)) ^ c ^¬b

(a!b)"(¬a!¬b)

Is SAT an NP-complete problem? 

NP-complete: SAT  

 

1.  Show that SAT is in NP 
a.  Provide a verifier 

b.  Show that the verifier runs in polynomial time 

2.  Show that all NP-complete problems are reducible to SAT in polynomial 
time 

a.  Describe a reduction function f from a known NP-Complete problem to SAT 

b.  Show that f runs in polynomial time 

c.  Show that a solution exists to the NP-Complete problem IFF a solution exists to 
the SAT problem generate by f 

Given a boolean formula of n boolean variables joined by m 
connectives (AND, OR or NOT) is there a setting of the variables 
such that the boolean formula evaluate to true? 

 ((¬(b!¬c)"a)!(a ^ b ^ c)) ^ c ^¬b
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NP-Complete: SAT 
 
1.  Show that SAT is in NP 

a.  Provide a verifier 
b.  Show that the verifier runs in polynomial time 

Verifier: A solution consists of an assignment of the variables 
•  If clause is a single variable: 

•  return the value of the variable 
•  otherwise 

•  for each clause: 
•  call the verifier recursively 
•  compute a running solution 

polynomial run-time? 

NP-Complete: SAT 

Verifier: A solution consists of an assignment of the variables 
•  If clause is a single variable: 

•  return the value of the variable 
•  otherwise 

•  for each clause: 
•  call the verifier recursively 
•  compute a running solution 

linear time 

-  at most a linear number of recursive calls (each call 
makes the problem smaller and no overlap) 

-  overall polynomial time 

NP-Complete: SAT 
1.     

2.  Show that all NP-complete problems are reducible to SAT in polynomial time 
a.  Describe a reduction function f from a known NP-Complete problem to SAT 

b.  Show that f runs in polynomial time 

c.  Show that a solution exists to the NP-Complete problem IFF a solution exists to the SAT 
problem generate by f 

Reduce 3-SAT to SAT:  
- Given an instance of 3-SAT, turn it into an instance of SAT 
 
Reduction function: 
•  DONE J 
 
-  Runs in constant time! (or linear if you have to copy the problem) 

NP-Complete: SAT 

-  Assume we have a 3-SAT problem with a solution: 
-  Because 3-SAT problems are a subset of SAT problems, then the SAT problem 

will also have a solution 
-  Assume we have a problem instance generated by our reduction with a solution: 

-  Our reduction function simply does a copy, so it is already a  
3-SAT problem 

-  Therefore the variable assignment found by our SAT-solver will also be a 
solution to the original 3-SAT problem 

¨  Show that a solution exists to the NP-Complete problem IFF a solution exists to the 
NEW problem generate by f 

¤  Assume we have an NP-Complete problem instance that has a solution, show that 
the NEW problem instance generated by f has a solution 

¤  Assume we have a problem instance of NEW generated by f that has a solution, 
show that we can derive a solution to the NP-Complete problem instance 
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NP-Complete problems 

¨  Why do we care about showing that a problem is NP-Complete? 

¤  We know that the problem is hard (and we probably won’t find a 
polynomial time exact solver) 

¤  We may need to compromise: 
n  reformulate the problem 
n  settle for an approximate solution 

¤  Down the road, if a solution is found for an NP-complete problem, then 
we’d have one too… 

CLIQUE 

¨  A clique in an undirected graph G = (V, E) is a subset 
V’ ⊆ V of vertices that are fully connected, i.e. every 
vertex in V’ is connected to every other vertex in V’ 

¨  CLIQUE problem: Does G contain a clique of size k? 

Is there a clique of size 4 in this graph? 

CLIQUE 

¨  A clique in an undirected graph G = (V, E) is a subset 
V’ ⊆ V of vertices that are fully connected, i.e. every 
vertex in V’ is connected to every other vertex in V’ 

¨  CLIQUE problem: Does G contain a clique of size k? 

CLIQUE is an NP-Complete problem 

HALF-CLIQUE 

Given a graph G, does the graph contain a clique 
containing exactly half the vertices? 

Is HALF-CLIQUE an NP-complete problem? 
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Is Half-Clique NP-Complete? 

1.  Show that NEW is in NP 
a.  Provide a verifier 

b.  Show that the verifier runs in polynomial time 

2.  Show that all NP-complete problems are reducible to NEW in 
polynomial time 

a.  Describe a reduction function f from a known NP-Complete problem to 
NEW 

b.  Show that f runs in polynomial time 

c.  Show that a solution exists to the NP-Complete problem IFF a solution 
exists to the NEW problem generate by f 

Given a graph G, does the graph contain a clique 
containing exactly half the vertices? 

HALF-CLIQUE 
 
1.  Show that HALF-CLIQUE is in NP 

a.  Provide a verifier 
b.  Show that the verifier runs in polynomial time 

Verifier: A solution consists of the set of vertices in V’ 
•  check that |V ‘| = |V|/2  
•  for all pairs of u, v ∈ V’ 

•  there exists an edge (u,v) ∈ E 

-  Check for edge existence in O(V) 
-  O(V2) checks 
-  O(V3) overall, which is polynomial 

HALF-CLIQUE 
1.     

2.  Show that all NP-complete problems are reducible to SAT in polynomial time 
a.  Describe a reduction function f from a known NP-Complete problem to SAT 

b.  Show that f runs in polynomial time 

c.  Show that a solution exists to the NP-Complete problem IFF a solution exists to the SAT 
problem generate by f 

Reduce CLIQUE to HALF-CLIQUE:  
- Given an instance of CLIQUE, turn it into an instance of HALF-CLIQUE 

HALF-CLIQUE 

Reduce CLIQUE to HALF-CLIQUE:  
- Given an instance of CLIQUE, turn it into an instance of HALF-CLIQUE 

It’s already a half-clique problem 
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HALF-CLIQUE 

Reduce CLIQUE to HALF-CLIQUE:  
- Given an instance of CLIQUE, turn it into an instance of HALF-CLIQUE 

We’re looking for a clique that is smaller than half, so add an 
artificial clique to the graph and connect it up to all vertices 

HALF-CLIQUE 

Reduce CLIQUE to HALF-CLIQUE:  
- Given an instance of CLIQUE, turn it into an instance of HALF-CLIQUE 

We’re looking for a clique that is bigger than half, so add 
vertices until k = |V|/2 

HALF-CLIQUE 

Reduce CLIQUE to HALF-CLIQUE:  
- Given an instance of CLIQUE, turn it into an instance of HALF-CLIQUE 

Runtime: From the construction we can see that it is polynomial time 

Reduction proof 

¨  Given a graph G that has a CLIQUE of size k, show 
that f(G,k) has a solution to HALF-CLIQUE 

¨  If k = |V|/2: 
¤  the graph is unmodified 
¤  f(G,k) has a clique that is half the size 
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Reduction proof 

¨  Given a graph G that has a CLIQUE of size k, show 
that f(G,k) has a solution to HALF-CLIQUE 

¨  If k < |V|/2: 
¤ we added a clique of |V|- 2k fully connected nodes 
¤  there are |V| + |V| - 2k = 2(|V|-k) nodes in f(G) 
¤  there is a clique in the original graph of size k 
¤ plus our added clique of |V|-2k 
¤ k + |V|-2k = |V|-k, which is half the size of f(G) 

Reduction proof 

¨  Given a graph G that has a CLIQUE of size k, show 
that f(G,k) has a solution to HALF-CLIQUE 

¨  If k >|V|/2: 
¤ we added 2k - |V| unconnected vertices 
¤  f(G) contains |V| + 2k - |V| = 2k vertices 
¤ Since the original graph had a clique of size k vertices, 

the new graph will have a half-clique 

Reduction proof 

¨  Given a graph f(G) that has a CLIQUE half the 
elements, show that G has a clique of size k 

¨  Key: f(G) was constructed by your reduction function 
¨  Use a similar argument to what we used in the other 

direction 

P vs. NP 

The big question: 

P=NP P 

NP 

? 
Someone finds a polynomial 
time solution to one of the  
NP-Complete problems 

NP-Complete problems are 
somehow harder and distinct 



5/8/12	
  

18	
  

Solving NP-Complete problems 

¨  http://www.tsp.gatech.edu/index.html 


