
5/8/12	

1	

NP-COMPLETE PROBLEMS

Admin

¨  Last assignment out today (yay!)
¨  Review topics?

¤ E-mail me if you have others…

¨  CS senior theses
¤ Wed 12:30-1:30 (MBH 538)
¤ Thur 3-4:30 (MBH 104)

Run-time analysis

¨  We’ve spent a lot of time in this class putting algorithms
into specific run-time categories:
¤ O(log n)
¤ O(n)
¤ O(n log n)
¤ O(n2)
¤ O(n log log n)
¤ O(n1.67)
¤ …

¨  When I say an algorithm is O(f(n)), what does that
mean?

Tractable vs. intractable problems

What is a “tractable” problem?

5/8/12	

2	

Tractable vs. intractable problems

Tractable problems can be solved in
O(f(n)) where f(n) is a polynomial

Tractable vs. intractable problems

What about…

O(nlog log log log n)?

O(n100)?

Tractable vs. intractable problems

Technically O(n100) is tractable by our definition

Why don’t we worry about problems like this?

Tractable vs. intractable problems

Technically O(n100) is tractable by our definition
•  Few practical problems result in solutions like this
•  Once a polynomial time algorithm exists, more

efficient algorithms are usually found
•  Polynomial algorithms are amenable to parallel

computation

5/8/12	

3	

Solvable vs. unsolvable problems

What is a “solvable” problem?

Solvable vs. unsolvable problems

A problem is solvable if given enough (i.e.
finite) time you could solve it

Sorting

Given n integers, sort them from smallest to largest.

Tractable/intractable?

Solvable/unsolvable?

Sorting

Given n integers, sort them from smallest to largest.

Solvable and tractable:
Mergesort: Θ(n log n)	

5/8/12	

4	

Enumerating all subsets

Given a set of n items, enumerate all possible
subsets.

Tractable/intractable?

Solvable/unsolvable?

Enumerating all subsets

Given a set of n items, enumerate all possible
subsets.

Solvable, but intractable: Θ(2n) subsets

For large n this will take a very, very long time	

Halting problem

Given an arbitrary algorithm/program and a
particular input, will the program terminate?

Tractable/intractable?

Solvable/unsolvable?

Halting problem

Given an arbitrary algorithm/program and a
particular input, will the program terminate?

Unsolvable L

5/8/12	

5	

Integer solution?

Given a polynomial equation, are there integer values
of the variables such that the equation is true?

Tractable/intractable?

Solvable/unsolvable?

x3yz+ 2y4z2 ! 7xy5z = 6

Integer solution?

Given a polynomial equation, are there integer values
of the variables such that the equation is true?

x3yz+ 2y4z2 ! 7xy5z = 6

Unsolvable L

Hamiltonian cycle

Given an undirected graph G=(V, E), a hamiltonian
cycle is a cycle that visits every vertex V exactly once

A

B

E
D

F

Hamiltonian cycle

Given an undirected graph G=(V, E), a hamiltonian
cycle is a cycle that visits every vertex V exactly once

A

B

E
D

F

5/8/12	

6	

Hamiltonian cycle

Given an undirected graph G=(V, E), a hamiltonian
cycle is a cycle that visits every vertex V exactly once

A

B

E
D

F

Hamiltonian cycle

Given an undirected graph G=(V, E), a hamiltonian
cycle is a cycle that visits every vertex V exactly once

A

B

E
D

F

Hamiltonian cycle

Given an undirected graph, does it contain a
hamiltonian cycle?

Tractable/intractable?

Solvable/unsolvable?

Hamiltonian cycle

Given an undirected graph, does it contain a
hamiltonian cycle?

Solvable: Enumerate all possible paths (i.e.
include an edge or don’t) check if it’s a
hamiltonian cycle

How would we do this check exactly,
specifically given a graph and a path?

5/8/12	

7	

Checking hamiltonian cycles Checking hamiltonian cycles

Make sure the path starts and
ends at the same vertex and is
the right length

Can’t revisit a vertex

Edge has to be in the graph

Check if we visited all the vertices

NP problems

NP is the set of problems that can be verified in
polynomial time

A problem can be verified in polynomial time if you can
check that a given solution is correct in polynomial time

 (NP is an abbreviation for non-deterministic polynomial time)

Checking hamiltonian cycles

Running time?

O(V) adjacency matrix
O(V+E) adjacency list

What does that say about the
hamilonian cycle problem?

It belongs to NP

5/8/12	

8	

NP problems

¨  Why might we care about NP problems?
¤  If we can’t verify the solution in polynomial time then an

algorithm cannot exist that determines the solution in
this time (why not?)

¤ All algorithms with polynomial time solutions are in NP

¨  The NP problems that are currently not solvable in
polynomial time could in theory be solved in
polynomial time

P and NP

P

NP
Big-O allowed us to group
algorithms by run-time

Today, we’re talking about sets
of problems grouped by how
easy they are to solve

Reduction function

Given two problems P1 and P2 a reduction function is a
function that transforms a problem instance x from an
instance of problem P1 to a problem of P2, f(x)

such that: a solution to x exists for P1 iff a solution for
f(x) exists for P2

f x f(x)
P1 instance P2 instance

Reduction function

¨  Where have we seen reductions before?
¤ Flow problem reduced to the linear programming

problem
¤ All pairs shortest path through a particular vertex

reduced to single source shortest path

¨  Why are they useful?

f x f(x)
P1 instance P2 instance

5/8/12	

9	

Reduction function

f Problem P2
x f(x) yes

no

yes

no

Problem P1

Allow us to solve P1 problems if we have a solver for P2

f x f(x)
P1 instance P2 instance

NP-Complete

¨  A problem is NP-complete if:
1.  it can be verified in polynomial time (i.e. in NP)
2.  any NP-complete problem can be reduced to the

problem in polynomial time (is NP-hard)

The hamiltonian cycle problem is NP-complete

What are the implications of this?

NP-Complete

¨  A problem is NP-complete if:
1.  it can be verified in polynomial time (i.e. in NP)
2.  any NP-complete problem can be reduced to the

problem in polynomial time (is NP-hard)

The hamiltonian cycle problem is NP-complete

It’s at least as hard as any of the other NP-complete problems

NP-complete

¨  If found a polynomial time solution to the hamiltonian
cycle problem, we would have a polynomial time
solution to any NP-complete problem
¤  Take the input of the problem
¤ Convert it to the hamiltonian cycle problem (by definition,

we know we can do this in polynomial time)
¤  Solve it
¤  If yes output yes, if no, output no

¨  Similarly, if we found a polynomial time solution to any
NP-complete problem we’d have a solution to all NP-
complete problems

5/8/12	

10	

NP-complete problems

¨  Longest path
Given a graph G with nonnegative edge weights does a
simple path exist from s to t with weight at least g?

¨  Integer linear programming
Linear programming with the constraint that the values
must be integers

NP-complete problems

¨  3D matching
Bipartite matching: given two sets of things and pair
constraints, find a matching between the sets
3D matching: given three sets of things and triplet constraints,
find a matching between the sets

Figure from Dasgupta et. al 2008

P vs. NP

Polynomial time solutions exist
NP-complete
(and no polynomial time
solution currently exists)

Shortest path

Bipartite matching

Linear programming

Minimum cut

…

Longest path

3D matching

Integer linear programming

Balanced cut

…

Proving NP-completeness

¨  A problem is NP-complete if:
1.  it can be verified in polynomial time (i.e. in NP)
2.  any NP-complete problem can be reduced to the

problem in polynomial time (is NP-hard)

Ideas?

5/8/12	

11	

Proving NP-completeness

Given a problem NEW to show it is NP-Complete

1.  Show that NEW is in NP

a.  Provide a verifier
b.  Show that the verifier runs in polynomial time

2.  Show that all NP-complete problems are reducible to
NEW in polynomial time

a.  Describe a reduction function f from a known NP-Complete
problem to NEW

b.  Show that f runs in polynomial time
c.  Show that a solution exists to the NP-Complete problem IFF

a solution exists to the NEW problem generate by f

Proving NP-completeness

¨  Show that a solution exists to the NP-Complete problem IFF a
solution exists to the NEW problem generate by f
¤ Assume we have an NP-Complete problem instance that has

a solution, show that the NEW problem instance generated
by f has a solution

¤ Assume we have a problem instance of NEW generated by f
that has a solution, show that we can derive a solution to the
NP-Complete problem instance

¨  Other ways of proving the IFF, but this is often the
easiest

Proving NP-completeness

Why is it sufficient to show that one NP-complete
problem reduces to the NEW problem?

Show that all NP-complete problems are
reducible to NEW in polynomial time

Proving NP-completeness

All others can be reduced to NEW by first reducing to
the one problem, then reducing to NEW. Two
polynomial time reductions is still polynomial time!

Show that all NP-complete problems are
reducible to NEW in polynomial time

5/8/12	

12	

Proving NP-completeness

Show that all NP-complete problems are reducible to
NEW in polynomial time

Show that any NP-complete problem is reducible to
NEW in polynomial time

Show that NEW is reducible to any NP-complete
problem in polynomial time

BE CAREFUL!

NP-complete: 3-SAT

¨  A boolean formula is in n-conjunctive normal form (n-CNF) if:
¤  it is expressed as an AND of clauses

¤  where each clause is an OR of no more than n variables

¨  3-SAT: Given a 3-CNF boolean formula, is it satisfiable?

(a!¬a!¬b)"(c!b!d)"(¬a!¬c!¬d)

3-SAT is an NP-complete problem

NP-complete: SAT

Given a boolean formula of n boolean variables joined by
m connectives (AND, OR or NOT) is there a setting of the
variables such that the boolean formula evaluate to true?

((¬(b!¬c)"a)!(a ^ b ^ c)) ^ c ^¬b

(a!b)"(¬a!¬b)

Is SAT an NP-complete problem?

NP-complete: SAT

1.  Show that SAT is in NP
a.  Provide a verifier

b.  Show that the verifier runs in polynomial time

2.  Show that all NP-complete problems are reducible to SAT in polynomial
time

a.  Describe a reduction function f from a known NP-Complete problem to SAT

b.  Show that f runs in polynomial time

c.  Show that a solution exists to the NP-Complete problem IFF a solution exists to
the SAT problem generate by f

Given a boolean formula of n boolean variables joined by m
connectives (AND, OR or NOT) is there a setting of the variables
such that the boolean formula evaluate to true?

 ((¬(b!¬c)"a)!(a ^ b ^ c)) ^ c ^¬b

5/8/12	

13	

NP-Complete: SAT

1.  Show that SAT is in NP

a.  Provide a verifier
b.  Show that the verifier runs in polynomial time

Verifier: A solution consists of an assignment of the variables
•  If clause is a single variable:

•  return the value of the variable
•  otherwise

•  for each clause:
•  call the verifier recursively
•  compute a running solution

polynomial run-time?

NP-Complete: SAT

Verifier: A solution consists of an assignment of the variables
•  If clause is a single variable:

•  return the value of the variable
•  otherwise

•  for each clause:
•  call the verifier recursively
•  compute a running solution

linear time

-  at most a linear number of recursive calls (each call
makes the problem smaller and no overlap)

-  overall polynomial time

NP-Complete: SAT
1. 

2.  Show that all NP-complete problems are reducible to SAT in polynomial time
a.  Describe a reduction function f from a known NP-Complete problem to SAT

b.  Show that f runs in polynomial time

c.  Show that a solution exists to the NP-Complete problem IFF a solution exists to the SAT
problem generate by f

Reduce 3-SAT to SAT:
- Given an instance of 3-SAT, turn it into an instance of SAT

Reduction function:
•  DONE J

-  Runs in constant time! (or linear if you have to copy the problem)

NP-Complete: SAT

-  Assume we have a 3-SAT problem with a solution:
-  Because 3-SAT problems are a subset of SAT problems, then the SAT problem

will also have a solution
-  Assume we have a problem instance generated by our reduction with a solution:

-  Our reduction function simply does a copy, so it is already a
3-SAT problem

-  Therefore the variable assignment found by our SAT-solver will also be a
solution to the original 3-SAT problem

¨  Show that a solution exists to the NP-Complete problem IFF a solution exists to the
NEW problem generate by f

¤  Assume we have an NP-Complete problem instance that has a solution, show that
the NEW problem instance generated by f has a solution

¤  Assume we have a problem instance of NEW generated by f that has a solution,
show that we can derive a solution to the NP-Complete problem instance

5/8/12	

14	

NP-Complete problems

¨  Why do we care about showing that a problem is NP-Complete?

¤  We know that the problem is hard (and we probably won’t find a
polynomial time exact solver)

¤  We may need to compromise:
n  reformulate the problem
n  settle for an approximate solution

¤  Down the road, if a solution is found for an NP-complete problem, then
we’d have one too…

CLIQUE

¨  A clique in an undirected graph G = (V, E) is a subset
V’ ⊆ V of vertices that are fully connected, i.e. every
vertex in V’ is connected to every other vertex in V’

¨  CLIQUE problem: Does G contain a clique of size k?

Is there a clique of size 4 in this graph?

CLIQUE

¨  A clique in an undirected graph G = (V, E) is a subset
V’ ⊆ V of vertices that are fully connected, i.e. every
vertex in V’ is connected to every other vertex in V’

¨  CLIQUE problem: Does G contain a clique of size k?

CLIQUE is an NP-Complete problem

HALF-CLIQUE

Given a graph G, does the graph contain a clique
containing exactly half the vertices?

Is HALF-CLIQUE an NP-complete problem?

5/8/12	

15	

Is Half-Clique NP-Complete?

1.  Show that NEW is in NP
a.  Provide a verifier

b.  Show that the verifier runs in polynomial time

2.  Show that all NP-complete problems are reducible to NEW in
polynomial time

a.  Describe a reduction function f from a known NP-Complete problem to
NEW

b.  Show that f runs in polynomial time

c.  Show that a solution exists to the NP-Complete problem IFF a solution
exists to the NEW problem generate by f

Given a graph G, does the graph contain a clique
containing exactly half the vertices?

HALF-CLIQUE

1.  Show that HALF-CLIQUE is in NP

a.  Provide a verifier
b.  Show that the verifier runs in polynomial time

Verifier: A solution consists of the set of vertices in V’
•  check that |V ‘| = |V|/2
•  for all pairs of u, v ∈ V’

•  there exists an edge (u,v) ∈ E

-  Check for edge existence in O(V)
-  O(V2) checks
-  O(V3) overall, which is polynomial

HALF-CLIQUE
1. 

2.  Show that all NP-complete problems are reducible to SAT in polynomial time
a.  Describe a reduction function f from a known NP-Complete problem to SAT

b.  Show that f runs in polynomial time

c.  Show that a solution exists to the NP-Complete problem IFF a solution exists to the SAT
problem generate by f

Reduce CLIQUE to HALF-CLIQUE:
- Given an instance of CLIQUE, turn it into an instance of HALF-CLIQUE

HALF-CLIQUE

Reduce CLIQUE to HALF-CLIQUE:
- Given an instance of CLIQUE, turn it into an instance of HALF-CLIQUE

It’s already a half-clique problem

5/8/12	

16	

HALF-CLIQUE

Reduce CLIQUE to HALF-CLIQUE:
- Given an instance of CLIQUE, turn it into an instance of HALF-CLIQUE

We’re looking for a clique that is smaller than half, so add an
artificial clique to the graph and connect it up to all vertices

HALF-CLIQUE

Reduce CLIQUE to HALF-CLIQUE:
- Given an instance of CLIQUE, turn it into an instance of HALF-CLIQUE

We’re looking for a clique that is bigger than half, so add
vertices until k = |V|/2

HALF-CLIQUE

Reduce CLIQUE to HALF-CLIQUE:
- Given an instance of CLIQUE, turn it into an instance of HALF-CLIQUE

Runtime: From the construction we can see that it is polynomial time

Reduction proof

¨  Given a graph G that has a CLIQUE of size k, show
that f(G,k) has a solution to HALF-CLIQUE

¨  If k = |V|/2:
¤  the graph is unmodified
¤  f(G,k) has a clique that is half the size

5/8/12	

17	

Reduction proof

¨  Given a graph G that has a CLIQUE of size k, show
that f(G,k) has a solution to HALF-CLIQUE

¨  If k < |V|/2:
¤ we added a clique of |V|- 2k fully connected nodes
¤  there are |V| + |V| - 2k = 2(|V|-k) nodes in f(G)
¤  there is a clique in the original graph of size k
¤ plus our added clique of |V|-2k
¤ k + |V|-2k = |V|-k, which is half the size of f(G)

Reduction proof

¨  Given a graph G that has a CLIQUE of size k, show
that f(G,k) has a solution to HALF-CLIQUE

¨  If k >|V|/2:
¤ we added 2k - |V| unconnected vertices
¤  f(G) contains |V| + 2k - |V| = 2k vertices
¤ Since the original graph had a clique of size k vertices,

the new graph will have a half-clique

Reduction proof

¨  Given a graph f(G) that has a CLIQUE half the
elements, show that G has a clique of size k

¨  Key: f(G) was constructed by your reduction function
¨  Use a similar argument to what we used in the other

direction

P vs. NP

The big question:

P=NP P

NP

?
Someone finds a polynomial
time solution to one of the
NP-Complete problems

NP-Complete problems are
somehow harder and distinct

5/8/12	

18	

Solving NP-Complete problems

¨  http://www.tsp.gatech.edu/index.html

