5/3/12

String Algorithms

David Kauchak
cs302
Spring 2012

Where did “dynamic programming” come from?

“I spent the Fall quarter (of 1950) at RAND. My first task
was 1o find a name for multistag
“An interesting question is.

sion processes.
Where did the name,
dynamic programming. come from?’ The 1950s were not
good years for mathematical research. We had a very inter-
esting gentleman in Washington named Wilson. He was
¢ had a pathological

'm not u he

poratior yed by and the Air Force
had Wilson as its boss, essentially elt I had to do
something to shield Wilson and the Air Force from the fact
that I was really doing mathematics inside the RAND Cor-
poration. What title. what name, could 1 choose? In the first
place I was interested in planning. in decision making, in
thinking. But planning, is not a good word for various rea-
sons. I decided therefore to use the word, *programming.”
hat this was

I wante

was multistag
two birds wi
absolutely pi y
It also has a very
. and tha
dynamic, in a pejorative s thinking of some com-
bination that will possibly g a pejorative meaning

i's impossible 1o use the word,

1t's impossible. Thus, T thought dynamic programming was

a good name. It was something not even a Congressman
could object to. So 1 used it as an umbrella for my activi-
ties” (p. 159)

Richard Bellman On the Birth of
Dynamic Programming

Stuart Dreyfus

http://www.eng.tau.ac.il/~ami/cd/
or50/1526-5463-2002-50-01-0048
.pdf

Strings

e Let 2 be an alphabet,e.g. 2=(,a, b,c, ...,
2)

e A string is any member of Z*, i.e. any
sequence of 0 or more members of
o ‘thisis astring’ € 2*
o ‘thisis also a string’ € £*
o ‘“1234" ¢ =*

String operations

e Given strings s, of length n and s, of length m
e Equality: is s; = s,? (case sensitive or insensitive)

‘this is a string” = ‘this is a string’

‘this is a string” # ‘this is another string’
‘this is a string’ =? ‘THIS IS A STRING’

e Running time

e O(n) where n is length of shortest string

5/3/12

String operations

e Concatenate (append): create string s;s,

‘thisisa’ . ‘ string’ — ‘this is a string’

e Running time
(assuming we generate a new string)
e O(n+m)

String operations

e Substitute: Exchange all occurrences of a
particular character with another character

ITL

Substitute(‘this is a string’, ‘i, x)
— ‘thxs xs a strxng’

Substitute(‘banana’, ‘a’, ‘o’) — ‘bonono’

e Running time
° O(n)

String operations

e Length: return the number of characters/
symbols in the string

Length(‘this is a string’) — 16
Length(‘this is another string”) — 24

e Running time
e O(1) or ©(n) depending on implementation

String operations

e Prefix: Get the first j characters in the string
Prefix(‘this is a string’, 4) — ‘this’
e Running time
° 0()
o Suffix: Get the last j characters in the string

Suffix(‘this is a string’, 6) — ‘string’

e Running time
° 0()

5/3/12

String operations
e Substring — Get the characters between i and j inclusive
Substring(‘this is a string’, 4, 8) — ‘sis’
e Running time
o Of-i+1)

o Prefix: Prefix(S, i) = Substring(S, 1, i)
o Suffix: Suffix(S, i) = Substring(S, i+1, length(n))

Edit distance
(aka Levenshtein distance)

Edit distance between two strings is the minimum
number of insertions, deletions and substitutions
required to transform string s, into string s,

Insertion:

ABACED [X) ABACCED) DABACCED

Insert Insert
o ‘D’

Edit distance
(aka Levenshtein distance)

Edit distance between two strings is the minimum
number of insertions, deletions and substitutions
required to transform string s, into string s,
Deletion:

ABACED

Edit distance
(aka Levenshtein distance)

Edit distance between two strings is the minimum
number of insertions, deletions and substitutions
required to transform string s, into string s,

Deletion:

ABACED [X) BACED

Delete
N

5/3/12

Edit distance
(aka Levenshtein distance)
Edit distance between two strings is the minimum

number of insertions, deletions and substitutions
required to transform string s, into string s,

Deletion:

=) BACE

Delete Delete
N D’

ABACED [X) BACED

Edit distance
(aka Levenshtein distance)

Edit distance between two strings is the minimum
number of insertions, deletions and substitutions
required to transform string s, into string s,

Substitution:
ABACED [X) ABADED [X) ABADES

Sub ‘D’ for ‘C’ Sub ‘S’ for ‘D’

Edit distance examples

Edit(Kitten, Mitten) = 1

Operations:

Sub ‘M’ for ‘K’ Mitten

Edit distance examples

Edit(Happy, Hilly)= 3

Operations:
Sub ‘a’ for ‘i’ Hippy
Sub ‘I" for ‘p” Hilpy
Sub ‘I’ for ‘p” Hilly

5/3/12

Edit distance examples

Edit(Banana, Car)= 5

Operations:
Delete ‘B’ anana
Delete ‘a’ nana
Delete ‘n’ naa

Sub ‘C’ for ‘n” Caa

Sub ‘a’ for ‘r Car

Edit distance examples

Edit(Simple, Apple) = 3

Operations:

Delete ‘S’ imple
Sub ‘A’ for ‘i’ Ample
Sub ‘m’ for ‘p” Apple

Edit distance

Why might this be useful?

Is edit distance symmetric?
e that is, is Edit(s,, s,) = Edit(s,, s4)?
Edit(Simple, Apple) =? Edit(Apple, Simple)
e Why?
e sub ‘i’ for j —sub j for V'

o delete ‘i’ —insert ¥’
e insert ‘i' — delete ‘i’

5/3/12

Calculating edit distance

X=ABCBDAB

Calculating edit distance

X=ABCBDA?
l

Y=BDCABA Y=BDCAB?
I
|deas? After all of the operations, X needs
to equal Y
Calculating edit distance : Insert :

X=ABCBDA?
l

Y=BDCAB?
l

Operations: Insert
Delete
Substitute

X=ABCBDA?
l
Y=BDCAB®?
l

5/3/12

Insert

X=ABCBDA?|

Delete

X=ABCBDA?)
l

Edit

Y=BDCABT Y=BDCAB?
I
Edit(X,Y) = 1+Edit(X]...n’Yl.‘.m—])
Delete : Substition :

X=ABCBDA?® X=ABCBDA?

Edit 'l
Y=BDCAB? Y=BDCAB?

Edlt(Xﬂ Y) = 1+Edit(X],..n—l9}]1...m)

l

5/3/12

Substition Anything else?
X=ABCBDA]? X=ABCBDA?
Edit |
Y=BDCAB? Y=BDCAB?
l
Edit(X:Y)=1+Edit(X1.un-1’Yl.“m—1)
Equal : Equal :
X=ABCBDA? X=ABCBDA?
I Edit
Y=BDCAB? Y=BDCAB?

I

Edit(X, Y) = Edl-t(Xl.“n—l ’Yl...m—l)

5/3/12

oo eoo
eoe eoe
oo oo
. .
Combining results Combining results
. . 1+ Edit(X, .Y,) insertion
Insert: Edit(X,Y)=1+ Edlt(Xl_“n R Ylum_l) Edit(X,Y) = min. 1+ Edit(X, X,) deletion
Diff (x,,y,)+ Edit(X, .Y,) equal/substitution
. . Epir(X.Y)
Delete: Edlt(X’ Y) = 1 + Edlt(Xl...rl—l H),lm) 1 ”]‘H «— length[X]
2 1 lengthlY]
3 fori— (3 tom
) . . 1 d[i,0] — i
Substitute: Edlf(X, Y) =1+ Edll‘()(1 nel> Yl m—l) 5 forj—0ton
6 d[o, j] —
7 fOl‘lkltOiI! !
. . 8 for j«— lton
Equal: Edit(X,Y) = Edit(X, , .Y, ,..}) 0 4 = min(h i 1.3,
DIFF(x,u5) +d[i — 1.5 — 1])
10 return dm,n]
oo eoo
oo eoe
oo oo
. °

Running time

Epit(X.Y)

1 m « length[X]

2 n« length[Y]

3 fori«— 0Otom

4 d[i,0] — @ @(nm)
5 forj—0ton

6 d0,j] —j

7 fori—1ltom

3

for j— 1ton
dfi,j] = min(1+d[i — 1, j],
1+4d[i.j—1],
DIFF(23,45) +d[i — 1,7 — 1])

10 return d[m,n|

Variants

e Only include insertions and deletions
e What does this do to substitutions?

e Include swaps, i.e. swapping two adjacent characters
counts as one edit

e Weight insertion, deletion and substitution differently

e Weight specific character insertion, deletion and
substitutions differently

e Length normalize the edit distance

5/3/12

String matching

Given a pattern string P of length m and a string S
of length n, find all locations where P occurs in S

P =ABA

S = DCABABBABABA

String matching

Given a pattern string P of length m and a string S
of length n, find all locations where P occurs in S

P =ABA

S = DCABABBABABA

o1

Uses

e grep/egrep
e search

o find

e java.lang.String.contains()

Naive implementation

NAIVE-STRING-MATCHER(S, P)

1 n« length[S]

2 m «— length[P)

3 fors—0ton—m

4 if S[1..m]=T[s+ 1..s+m]
5 print “Pattern at 8"

10

5/3/12

oo oo
oo eoe
oo oo
° °
Is it correct? Running time?
NAIVE-STRING-MATCHER(S, P) NAIVE-STRING-MATCHER(S, P)
1 n« lengthlS] 1 n« length[S]
2 m «— length|P] 2 m «— length[P)
3 fors—0ton—m 3 fors—0ton—m
4 if S[l..m]=T[s+1..s+m] ‘-l if S[1..m] :T[s-%—l...s+m]‘
5 print “Pattern at s” 5 print “Pattern at 8"
e What is the cost of the equality check?
o Best case: O(1)
o Worst case: O(m)
oo oo
oo eoe
oo oo
° °
Running time? Worst case
NAIVE-STRING-MATCHER(S, P)
G C P -

1 n« lengthlS]
2 m « length[P]
3 fors—O0ton—m
4 if S[L..m] =T[s + 1...s +m]
5 print “Pattern at s”

e Best case

e O(n) — when the first character of the pattern does
not occur in the string

e Worst case
e O((n-m+1)m)

S = AAAAAAAAAAAAA

1

5/3/12

Worst case : Worst case :
P = AAAA P = AAAA
S = AAAAAAAAAAAAA S = AAAAAAAAAAAAA
l l
Worst case : Worst case :
P = AAAA P = AAAA

S=A?AAAAAAAAAAA

repeated work!

S = AAAAAAAAAAAAA

I

Ideally, after the first match, we’d
know to just check the next
character to see if itis an ‘A’

12

5/3/12

Patterns

Which of these patterns will have that problem?

P = ABAB
P =ABDC
P =BAA

P = ABBCDDCAABB

Patterns

Which of these patterns will have that problem?

P =7APAB If the pattern has a
suffix that is also a
P =ABDC prefix then we will

have this problem

P = BAA

P = ABBCDDCAABB

Finite State Automata (FSA)

e An FSA is defined by 5 components
o Qs the set of states

Finite State Automata (FSA)

e An FSA is defined by 5 components
o Qs the set of states

qo is the start state

o ACQ, is the set of accepting states where |A| >0
o Xis the alphabet (e.g. {A, B}
o J is the transition function from Q x X to Q
B
D
(o (ar” (@)

A

13

5/3/12

o000 00
s : s
FSA operation : FSA operation H
P =ABA
B A A
% a0 ;
5 B
An FSA starts at state q, and reads the characters of the input What pattern does this represent?
string one at a time.)
If the automaton is in state q and reads character a, then it
transitions to state 8(q,a).
If the FSA reaches an accepting state (q € A), then the FSA has
found a match.
o000 o000
s : s
FSA operation H FSA operation :
P =ABA P =ABA

B A A
B B

S =IBABABBABABA

S= |]3ABABBABABA

14

5/3/12

FSA operation FSA operation
P = ABA P =ABA

B A A B A A
B B B

B
S= B,IO\BABBABABA S= BAIIBABBABABA

FSA operation FSA operation
P = ABA P =ABA
B A A B A

S= BABA]BBABABA

B

S= BABAI?BABABA

5/3/12

FSA operation
P =ABA
B A A

S= BABABI?ABABA

FSA operation
P=ABA

B A A
B

B

S= BABABB,?BABA

FSA operation
P =ABA

B A A
B B

S= BABABBA?ABA

FSA operation
P =ABA
B A A

S= BABABBAB/?\BA

16

5/3/12

FSA operation
P =ABA

B A A
B B

S= BABABBABAIBA

FSA operation
P =ABA
B A A

S = BABABBAB

Suffix function

e The suffix function o(x,y) is the length of the
longest suffix of x that is a prefix of y

o(x,y) = miax(xm—Hl...m =¥,

o(abcdab, ababcd) = ?

Suffix function

e The suffix function a(x,y) is the length of the
longest suffix of x that is a prefix of y

(T(x, y) = miax(xm—iﬂmm = yl.“i)

o(abcdab, ababced) = 2

17

5/3/12

Suffix function

e The suffix function o(x,y) is the index of the
longest suffix of x that is a prefix of y

o(x,y) = m;‘lx(xm-m...m =¥,

o(daabac, abacac) = ?

Suffix function

e The suffix function a(x,y) is the length of the
longest suffix of x that is a prefix of y

(T(x, y) = miax(xm—i+l...m = yl...i)

o(da : ac)=4

Suffix function

e The suffix function o(x,y) is the length of the
longest suffix of x that is a prefix of y

o(x,y) = m;‘lx(xm-m...m =¥,

o(dabb, abacd) = ?

Suffix function

e The suffix function a(x,y) is the length of the
longest suffix of x that is a prefix of y

(T(x, y) = miax(xm—i+l...m = yl...i)

o(dabb, abacd) =0

18

5/3/12

Building a string matching
automata

e Given a pattern P = p,, p,, ..., P, we’ d like to build
an FSA that recognizes P in strings

P = ababaca

Ideas?

Building a string matching automata

P = ababaca

e Q=q4,0,, ..., q, corresponding to each
symbol, plus a q, starting state

e the set of accepting states, A = {q,.}

e vocab Z all symbols in P, plus one more
representing all symbols not in P

e The transition functionforqe Qandac X is
defined as:
® 8(q, @) =0o(py_qa, P)

Transition function
P = ababaca
e 3(q, @) = o(py_qa, P)

state |a |b |c
Y% ?
94
9z
93
94
9s
Y
97

o(a, ababaca)

ololo oo |oc|o|o

Transition function
P = ababaca
d 6((], a) = O(p'l...qai P)

state |a |b |c
do 11?
94
92
93
Q4
ds
96
97

a(b, ababaca)

QO || Tl | Oo|® T

19

5/3/12

Transition function
P = ababaca
e 3(q, @) = o(py_qa, P)

state

a

b

C

Y

0

?

94

92

93

94

9s

96

ololo oo |oc|o|o

97

a(b, ababaca)

Transition function
P = ababaca
hd 6((], a) = O(p'l...qai P)

state

a

b

C

Y%

1

0

0

94

92

93

Q4

ds

9

QO || T | TO|® T

97

a(b, ababaca)

Transition function

P = ababaca

° 6(q’ a) = O(p’l.“qa’ P)

state

a

b

Cc

Y

0

0

94

92

93

94

9s

96

ololo oo oo (o

97

B,C

Transition function

P = ababaca
d 6((], a) = O(p'l...qai P)

state

b

Y%

94

92

0
2
0

o|lo|o|o

93

a
1
1
3
5

Q4

ds

96

momc‘mo-mr'u

97

We’ ve seen ‘aba’ so far

o(abaa, ababaca)

20

5/3/12

Transition function

P = ababaca

° 6(q’ a) = O(p’l.“qa’ P)

state

b

Y

We’ ve seen ‘aba’ so far

94

92

0
2
0

o(abaa, ababaca)

93

a
1
1
3
1

94

9s

96

olo|olo
momc-‘n)o-mr'u

97

Transition function

P = ababaca

b 6((], a) = O(p'l...qai P)

state

b

Y%

We’ ve seen ‘ababa’ so

94

far

92

93

Q4

o|ojlo|o|o|0O

ds

a
1
1
3
1
5
1

N[O~ OIN|O

9

momcmo-mr'u

97

Transition function

P = ababaca

° 6(q’ a) = O(p’l.“qa’ P)

state

b

Y

We’ ve seen ‘ababa’ so

94

far

92

o(ababab, ababaca)

93

94

o|ojlo|o|Oo|0O

9s

a
1
1
3
1
5
1

N O |~ |O|IN|O

96

‘
momc-n)o-mr'u

97

Transition function

P = ababaca

b 6((], a) = O(p'l...qai P)

state

b

Y%

We’ ve seen ‘ababa’ so

94

far

92

o(ababab, ababaca)

93

Q4

o|lojlo|o|o|0O

ds

a
1
1
3
1
5
1

MO |OINM|O

96

momcmo-mr'u

97

21

5/3/12

. . 838 838
Transition function o o
P = ababaca Matching runtime
° 6(q’ a) = O(p’l.“qa’ P)
state la |b lc P e Once we’ ve built the FSA, what is the runtime?
110 lo e O(n) - Each symbol causes a state transition and we
Y a only visit each character once
q (112 |0 |b e What is the cost to build the FSA?
qd, 310 |0 |a e How many entries in the table?
q 114 |0 |b Q(miz)
3 e How long does it take to calculate the suffix function at
'R 5 (0 |0 |a each entry?
ds 114 |6 |c Naive: O(m)
~To To o Overall naive: O(m?|Z])
9 a o Overall fast implementation O(m|Z|)
q; 112 |0
[1X) ([X1X)
([1X] (X1 X]
o0 (1]
L] °

Rabin-Karp algorithm

- Use a function T to that computes a numerical
representation of P
- Calculate T for all m symbol sequences of S

and compare

P =ABA

S = BABABBABABA

Rabin-Karp algorithm

- Use a function T to that computes a numerical
representation of P

- Calculate T for all m symbol sequences of S
and compare

P = ABA Hash P

T(P)

S = BABABBABABA

22

5/3/12

00
s
.
Rabin-Karp algorithm Rabin-Karp algorithm
- Use a function T to that computes a numerical - Use a function T to that computes a numerical
representation of P representation of P
- Calculate T for all m symbol sequences of S - Calculate T for all m symbol sequences of S
and compare and compare
P =ABA P =ABA
match
Hash m symbol Hash m symbol
S = BABABBABABA sequences and compare S = BABABBABABA sequences and compare
) -
T(BAB) T(ABA)
T(P) T(P)
o000
o000
o0
L]

Rabin-Karp algorithm

- Use a function T to that computes a numerical
representation of P

- Calculate T for all m symbol sequences of S
and compare

P =ABA

Hash m symbol
sequences and compare

S = BABABBABABA
=~

T(BAB)

)

Rabin-Karp algorithm

- Use a function T to that computes a numerical
representation of P

- Calculate T for all m symbol sequences of S
and compare

P =ABA

Hash m symbol
S = BABABBABABA sequences and compare
LY_) -
T(BAB)

T(P)

23

5/3/12

[1X) ([X1X)
([1X] (X1 X)
(1] o0
L] L]
Rabin-Karp algorithm Rabin-Karp algorithm
For this to be useful/ For this to be useful/
efficient, what needs _ efficient, what needs
P =ABA to be true about T? P =ABA to be true about T?
Given T(S;_jsm.1) We must be able
to efficiently calculate T(Si11_ ivm)
S = BABABBABABA S = BABABBABABA
T(BAB) T(BAB)
T(I_’) T(E’)
[1X) ([X1X)
([1X] (X1 X]
o0 (1]
L] °

Calculating the hash function
e For simplicity, assume X = (0, 1, 2, ..., 9). (in general we
can use a base larger than 10).

e A string can then be viewed as a decimal number

e How do we efficiently calculate the numerical
representation of a string?

T(‘9847261") = ?

Horner’ s rule

T(p,) =p,+10(p,, +10(p, , +..+10(p, +10p))))

9847261
9%10=90
(90 +8)*10 = 980
(980 + 4)*10 = 9840
(9840 + 7)*10 = 98470
... = 9847621

24

5/3/12

Horner’ s rule

(p,) =p,+10(p, , +10(p, , +..+10(p, +10p))))

9847261

9%10=90
(90 + 8)*10 = 980

Running time?
©(m)

(980 + 4)*10 = 9840
(9840 + 7)*10 = 98470
... = 9847621

Calculating the hash on the
string

e Given T(S;_i:m.1) how can we efficiently
calculate T(Siy1_ism)?

m=4
963801572348267
——

T(si_ism-1)

T(si»fl..jm) = 10(T(Si...i+m-1) - 10”1_151') +Siim

Calculating the hash on the
string

e Given T(s; ;,m.1) how can we efficiently
calculate T(Siy1_ism)?

m=4 801
963801572348267
H_)

T(si._im1) subtract highest order digit

T(Siurivm) = IO(T(SiA..i-t-m—l)) * Siim

Calculating the hash on the
string

e Given T(s; i:m.1) how can we efficiently
calculate T(Siy1_ism)?

m=4 8010
963801572348267

T(Si. ism-1)
o shift digits up

T(si»fl..jm) = T(Si...i+m—l) - 10”1_151') +Siim

25

5/3/12

Calculating the hash on the
string

e Given T(s; ;,m.1) how can we efficiently
calculate T(Siy1_ism)?
m =4 8015
9638015/72348267

T(si_ism1) . -
add in the lowest digit

T(sp1_iom) =10(T(s; 4yp) = 10"1_15‘1

Calculating the hash on the
string

e Given T(s;_j.m.1) how can we efficiently
calculate T(Si1 _i+m)?

m =4 Running time?
963801572348267 O™ ersi .
H—) - 0(1) for the rest

T(si_ism-1)

T(Si»fl..jm):lo(T(s')_10”1_1Si)+si+m

ii+m-1

Algorithm so far...

e |s it correct?

o Each string has a unique numerical value and we
compare that with each value in the string

e Running time
o Preprocessing:
O(m)
o Matching
O(n-m+1)

Is there any problem with this analysis?

Algorithm so far...

e Is it correct?
o Each string has a unique numerical value and we
compare that with each value in the string
e Running time
o Preprocessing:
o(m)
o Matching
O(n-m+1)

How long does the check T(P) = T(s; .m.¢) take?

26

5/3/12

Modular arithmetics

e The run time assumptions we made were
assuming arithmetic operations were constant
time, which is not true for large numbers

e To keep the numbers small, we’ Il use modular
arithmetics, i.e. all operations are performed
mod q
e atb = (a+b)mod q
e a*b =(a*b) mod q

Modular arithmetics

e If T(A) = T(B), then T(A) mod g = T(B) mod q
o In general, we can apply mods as many times as
we want and we will not effect the result
e What is the downside to this modular
approach?
e Spurious hits: if T(A) mod q = T(B) mod q that
does not necessarily mean that T(A) = T(B)

» If we find a hit, we must check that the actual
string matches the pattern

Runtime

e Preprocessing
° @(m)
e Running time
o Best case:
©(n-m+1) — No matches and no spurious hits
o Worst case
O((n-m+1)m)

Average case running time

e Assume v valid matches in the string
e What is the probability of a spurious hit?

o As with hashing, assume a uniform mapping onto
values of q:

=) [ia]

o What is the probability under this assumption?

27

5/3/12

Average case running time

e Assume v valid matches in the string
e What is the probability of a spurious hit?

o As with hashing, assume a uniform mapping onto
values of q:

=) [ia]

e What is the probability under this assumption? 1/q

Average case running time

e How many spurious hits?
e n/q
e Average case running time:
O(n-m+1) + O(m(v+n/q))
H_/ | N

iterate over the checking matches
positions and spurious hits

Matching running times

Algorithm | Preprocessing time| Matching time
Naive 0 O((n-m+1)m)
FSA O(m|Z|) o(n)

Rabin-Karp O(m) O(n)+O(m(v+n/q))
Knuth-Morris-Pratt| ©(m) O(n)

28

