
4/19/12

1

Shortest Paths and
Minimum Spanning Trees

David Kauchak
cs302

Spring 2012

Admin

Dijkstra’s algorithm What about Dijkstra’s on…?

A

B

C E

D 1
1

-10

5
10

4/19/12

2

What about Dijkstra’s on…?

A

B

C E

D 1
1

5
10

Dijkstra’s algorithm only
works for positive edge
weights

Bounding the distance

l  Another invariant: For each vertex v, dist[v]
is an upper bound on the actual shortest
distance
l  start off at ∞
l  only update the value if we find a shorter distance

l  An update procedure

)},(][],[min{][vuwudistvdistvdist +=

Can we ever go wrong applying this update rule?
l  We can apply this rule as many times as we want

and will never underestimate dist[v]

When will dist[v] be right?
l  If u is along the shortest path to v and dist[u] is

correct

)},(][],[min{][vuwudistvdistvdist +=

l  dist[v] will be right if u is along the shortest
path to v and dist[u] is correct

l  Consider the shortest path from s to v

)},(][],[min{][vuwudistvdistvdist +=

s p1 v p2 p3 pk

4/19/12

3

l  dist[v] will be right if u is along the shortest
path to v and dist[u] is correct

l  What happens if we update all of the vertices
with the above update?

)},(][],[min{][vuwudistvdistvdist +=

s p1 v p2 p3 pk

l  dist[v] will be right if u is along the shortest
path to v and dist[u] is correct

l  What happens if we update all of the vertices
with the above update?

)},(][],[min{][vuwudistvdistvdist +=

s p1 v p2 p3 pk

correct

l  dist[v] will be right if u is along the shortest
path to v and dist[u] is correct

l  What happens if we update all of the vertices
with the above update?

)},(][],[min{][vuwudistvdistvdist +=

s p1 v p2 p3 pk

correct correct

l  dist[v] will be right if u is along the shortest
path to v and dist[u] is correct

l  Does the order that we update the vertices
matter?

)},(][],[min{][vuwudistvdistvdist +=

s p1 v p2 p3 pk

correct correct

4/19/12

4

l  dist[v] will be right if u is along the shortest path to v
and dist[u] is correct

l  How many times do we have to do this for vertex pi
to have the correct shortest path from s?
l  i times

)},(][],[min{][vuwudistvdistvdist +=

s p1 v p2 p3 pk

l  dist[v] will be right if u is along the shortest path to v
and dist[u] is correct

l  How many times do we have to do this for vertex pi
to have the correct shortest path from s?
l  i times

)},(][],[min{][vuwudistvdistvdist +=

s p1 v p2 p3 pk

correct correct

l  dist[v] will be right if u is along the shortest path to v
and dist[u] is correct

l  How many times do we have to do this for vertex pi
to have the correct shortest path from s?
l  i times

)},(][],[min{][vuwudistvdistvdist +=

s p1 v p2 p3 pk

correct correct correct

l  dist[v] will be right if u is along the shortest path to v
and dist[u] is correct

l  How many times do we have to do this for vertex pi
to have the correct shortest path from s?
l  i times

)},(][],[min{][vuwudistvdistvdist +=

s p1 v p2 p3 pk

correct correct correct correct

4/19/12

5

l  dist[v] will be right if u is along the shortest path to v
and dist[u] is correct

l  How many times do we have to do this for vertex pi
to have the correct shortest path from s?
l  i times

)},(][],[min{][vuwudistvdistvdist +=

s p1 v p2 p3 pk

correct correct correct correct …

l  dist[v] will be right if u is along the shortest
path to v and dist[u] is correct

l  What is the longest (vetex-wise) the path from
s to any node v can be?
l  |V| - 1 edges/vertices

)},(][],[min{][vuwudistvdistvdist +=

s p1 v p2 p3 pk

correct correct correct correct …

Bellman-Ford algorithm Bellman-Ford algorithm

Initialize all the
distances

iterate over all
edges/vertices and
apply update rule

do it |V| -1 times

4/19/12

6

Bellman-Ford algorithm

check for negative
cycles

Negative cycles

A

B

C E

D 1
1

-10

5
10

3

What is the shortest path
from a to e?

Bellman-Ford algorithm Bellman-Ford algorithm

G

S

F

E

A

D

B

C

10

8

1

-1

-1

3

1

1

2

-2

-4

How many edges is
the shortest path
from s to:

A:

4/19/12

7

Bellman-Ford algorithm

G

S

F

E

A

D

B

C

10

8

1

-1

-1

3

1

1

2

-2

-4

How many edges is
the shortest path
from s to:

A: 3

Bellman-Ford algorithm

G

S

F

E

A

D

B

C

10

8

1

-1

-1

3

1

1

2

-2

-4

How many edges is
the shortest path
from s to:

A: 3

B:

Bellman-Ford algorithm

G

S

F

E

A

D

B

C

10

8

1

-1

-1

3

1

1

2

-2

-4

How many edges is
the shortest path
from s to:

A: 3

B: 5

Bellman-Ford algorithm

G

S

F

E

A

D

B

C

10

8

1

-1

-1

3

1

1

2

-2

-4

How many edges is
the shortest path
from s to:

A: 3

B: 5

D:

4/19/12

8

Bellman-Ford algorithm

G

S

F

E

A

D

B

C

10

8

1

-1

-1

3

1

1

2

-2

-4

How many edges is
the shortest path
from s to:

A: 3

B: 5

D: 7

Bellman-Ford algorithm

G

S

F

E

A

D

B

C

10

8

1

-1

-1

3

1

1

2

-2

-4

0 ∞

∞

∞

∞ ∞

∞

∞

Iteration: 0

Bellman-Ford algorithm

G

S

F

E

A

D

B

C

10

8

1

-1

-1

3

1

1

2

-2

-4

0 10

∞

∞

∞ ∞

∞

8

Iteration: 1

Bellman-Ford algorithm

G

S

F

E

A

D

B

C

10

8

1

-1

-1

3

1

1

2

-2

-4

0 10

∞

∞

∞ 12

9

8

Iteration: 2

4/19/12

9

Bellman-Ford algorithm

G

S

F

E

A

D

B

C

10

8

1

-1

-1

3

1

1

2

-2

-4

0 5

10

∞

∞ 8

9

8

Iteration: 3

A has the correct
distance and path

Bellman-Ford algorithm

G

S

F

E

A

D

B

C

10

8

1

-1

-1

3

1

1

2

-2

-4

0 5

6

11

∞ 7

9

8

Iteration: 4

Bellman-Ford algorithm

G

S

F

E

A

D

B

C

10

8

1

-1

-1

3

1

1

2

-2

-4

0 5

5

7

14 7

9

8

Iteration: 5

B has the correct
distance and path

Bellman-Ford algorithm

G

S

F

E

A

D

B

C

10

8

1

-1

-1

3

1

1

2

-2

-4

0 5

5

6

10 7

9

8

Iteration: 6

4/19/12

10

Bellman-Ford algorithm

G

S

F

E

A

D

B

C

10

8

1

-1

-1

3

1

1

2

-2

-4

0 5

5

6

9 7

9

8

Iteration: 7

D (and all other
nodes) have the
correct distance
and path

Correctness of Bellman-Ford
Loop invariant:

Correctness of Bellman-Ford
Loop invariant: After iteration i, all vertices with
shortest paths from s of length i edges or less have
correct distances

Runtime of Bellman-Ford

O(|V| |E|)

4/19/12

11

Runtime of Bellman-Ford

Can you modify the algorithm to run
faster (in some circumstances)?

All pairs shortest paths

l  Simple approach
l  Call Bellman-Ford |V| times
l  O(|V|2 |E|)

l  Floyd-Warshall – Θ(|V|3)
l  Johnson’s algorithm – O(|V|2 log |V| + |V| |E|)

Minimum spanning trees
l  What is the lowest weight set of edges that connects all

vertices of an undirected graph with positive weights

l  Input: An undirected, positive weight graph, G=(V,E)

l  Output: A tree T=(V,E’) where E’ ⊆ E that minimizes

∑
∈

=
'

)(
Ee

ewTweight

MST example

A

B D

C

4

1

2
3

4
F

E

5
4

6

4

A

B D

C

4

1

2

F

E

5
4

4/19/12

12

MSTs

Can an MST have a cycle?

A

B D

C

4

1

2

F

E

5
4

4

MSTs

Can an MST have a cycle?

A

B D

C

4

1

2

F

E

5
4

Applications?

l  Connectivity
l  Networks (e.g. communications)
l  Circuit design/wiring

l  hub/spoke models (e.g. flights,
transportation)

l  Traveling salesman problem?

Algorithm ideas?

A

B D

C

4

1

2
3

4
F

E

5
4

6

4

A

B D

C

4

1

2

F

E

5
4

4/19/12

13

Cuts
l  A cut is a partitioning of the vertices into two sets S

and V-S
l  An edge “crosses” the cut if it connects a vertex

u∈V and v∈V-S

A

B D

C

4

1

2
3

4
F

E

5
4

6

4

Minimum cut property
Given a partion S, let edge e be the minimum
cost edge that crosses the partition. Every
minimum spanning tree contains edge e.

Prove this!

Minimum cut property
Given a partion S, let edge e be the minimum
cost edge that crosses the partition. Every
minimum spanning tree contains edge e.

S V-S

e’

e

Consider an MST with edge e’ that is not the minimum edge

Minimum cut property
Given a partion S, let edge e be the minimum
cost edge that crosses the partition. Every
minimum spanning tree contains edge e.

S V-S

e’

e

Using e instead of e’, still connects the graph,
but produces a tree with smaller weights

4/19/12

14

Kruskal’s algorithm
Given a partition S, let edge e be the minimum cost
edge that crosses the partition. Every minimum
spanning tree contains edge e.

Kruskal’s algorithm

A

B D

C

4

1

2
3

4
F

E

5 4

6

4

G

MST
A

B D

C

F

E

Add smallest edge that connects
two sets not already connected

A

B D

C

4

1

2
3

4
F

E

5 4

6

4

G

MST
A

B D

C
1

F

E

Add smallest edge that connects
two sets not already connected

Kruskal’s algorithm

A

B D

C

4

1

2
3

4
F

E

5 4

6

4

G

MST
A

B D

C
1

2

F

E

Add smallest edge that connects
two sets not already connected

Kruskal’s algorithm

4/19/12

15

A

B D

C

4

1

2
3

4
F

E

5 4

6

4

G

MST
A

B D

C

4

1

2

F

E

Kruskal’s algorithm
Add smallest edge that connects
two sets not already connected

A

B D

C

4

1

2
3

4
F

E

5
4

6

4

G

MST
A

B D

C

4

1

2

F

E

4

Kruskal’s algorithm
Add smallest edge that connects
two sets not already connected

A

B D

C

4

1

2
3

4
F

E

5
4

6

4

G

MST
A

B D

C

4

1

2

F

E

5
4

Kruskal’s algorithm
Add smallest edge that connects
two sets not already connected Correctness of Kruskal’s

l  Never adds an edge that connects already connected
vertices

l  Always adds lowest cost edge to connect two sets. By
min cut property, that edge must be part of the MST

4/19/12

16

Running time of Kruskal’s Running time of Kruskal’s

|V| calls to MakeSet

O(|E| log |E|)

2 |E| calls to FindSet

|V| calls to Union

Running time of Kruskal’s

Disjoint set data structure
O(|E| log |E|) +

MakeSet FindSet
|E| calls

Union
|V| calls

Total

Linked lists |V| O(|V| |E|) |V| O(|V||E| + |E| log |E|)

O(|V| |E|)

Linked lists +
heuristics

|V| O(|E| log |V|) |V| O(|E| log |V|+ |E| log |E|)

O(|E| log |E|)

Prim’s algorithm

4/19/12

17

Prim’s algorithm Prim’s algorithm

Prim’s algorithm
Start at some root node and build out the MST by
adding the lowest weighted edge at the frontier

Prim’s

A

B D

C

4

1

2
3

4
F

E

5 4

6

4 MST

A

B D

C

F

E

4/19/12

18

Prim’s

A

B D

C

4

1

2
3

4
F

E

5 4

6

4 MST

A

B D

C

F

E

∞ ∞ ∞

∞ ∞ 0

Prim’s

A

B D

C

4

1

2
3

4
F

E

5 4

6

4 MST

A

B D

C

F

E

∞ 4 5

∞ 6 0

Prim’s

A

B D

C

4

1

2
3

4
F

E

5 4

6

4 MST

A

B D

C

F

E

∞ 4 5

∞ 6 0

Prim’s

A

B D

C

4

1

2
3

4
F

E

5 4

6

4 MST

A

B D

C

F

E

1 4 5

4 2 0

4/19/12

19

Prim’s

A

B D

C

4

1

2
3

4
F

E

5 4

6

4 MST

A

B D

C

F

E

1 4 5

4 2 0

Prim’s

A

B D

C

4

1

2
3

4
F

E

5 4

6

4 MST

A

B D

C

F

E

1 4 5

4 2 0

Prim’s

A

B D

C

4

1

2
3

4
F

E

5 4

6

4 MST

A

B D

C

F

E

1 4 5

4 2 0

Prim’s

A

B D

C

4

1

2
3

4
F

E

5 4

6

4 MST

A

B D

C

F

E

1 4 5

4 2 0

4/19/12

20

Prim’s

A

B D

C

4

1

2
3

4
F

E

5 4

6

4 MST

A

B D

C

F

E

1 4 5

4 2 0

Prim’s

A

B D

C

4

1

2
3

4
F

E

5 4

6

4 MST

A

B D

C

F

E

1 4 5

4 2 0

Prim’s

A

B D

C

4

1

2
3

4
F

E

5 4

6

4 MST

A

B D

C

F

E

1 4 5

4 2 0

Correctness of Prim’s?

l  Can we use the min-cut property?
l  Given a partion S, let edge e be the minimum cost

edge that crosses the partition. Every minimum
spanning tree contains edge e.

l  Let S be the set of vertices visited so far
l  The only time we add a new edge is if it’s the

lowest weight edge from S to V-S

4/19/12

21

Running time of Prim’s Running time of Prim’s

Θ(|V|)

Θ(|V|)

|V| calls to Extract-Min

|E| calls to Decrease-Key

Running time of Prim’s

Same as Dijksta’s algorithm

1 MakeHeap |V| ExtractMin |E| DecreaseKey Total

Array O(|V|) O(|V|2) O(|E|) O(|V|2)

Bin heap O(|V|) O(|V| log |V|) O(|E| log |V|) O((|V|+|E|) log |V|)

Fib heap O(|V|) O(|V| log |V|) O(|E|) O(|V| log |V| + |E|)

O(|E| log |V|)

Kruskal’s: O(|E| log |E|)

