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What about Dijkstra’s on…? 
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Dijkstra’s algorithm only 
works for positive edge 
weights 

Bounding the distance 

l  Another invariant:  For each vertex v, dist[v] 
is an upper bound on the actual shortest 
distance 
l  start off at ∞ 
l  only update the value if we find a shorter distance 

l  An update procedure 

)},(][],[min{][ vuwudistvdistvdist +=

Can we ever go wrong applying this update rule? 
l  We can apply this rule as many times as we want 

and will never underestimate dist[v] 

When will dist[v] be right? 
l  If u is along the shortest path to v and dist[u] is 

correct 

)},(][],[min{][ vuwudistvdistvdist +=

l  dist[v] will be right if u is along the shortest 
path to v and dist[u] is correct 

l  Consider the shortest path from s to v 

)},(][],[min{][ vuwudistvdistvdist +=

s p1 v p2 p3 pk 
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l  dist[v] will be right if u is along the shortest 
path to v and dist[u] is correct 

l  What happens if we update all of the vertices 
with the above update? 

)},(][],[min{][ vuwudistvdistvdist +=

s p1 v p2 p3 pk 

l  dist[v] will be right if u is along the shortest 
path to v and dist[u] is correct 

l  What happens if we update all of the vertices 
with the above update? 

)},(][],[min{][ vuwudistvdistvdist +=

s p1 v p2 p3 pk 

correct 

l  dist[v] will be right if u is along the shortest 
path to v and dist[u] is correct 

l  What happens if we update all of the vertices 
with the above update? 

)},(][],[min{][ vuwudistvdistvdist +=

s p1 v p2 p3 pk 

correct correct 

l  dist[v] will be right if u is along the shortest 
path to v and dist[u] is correct 

l  Does the order that we update the vertices 
matter? 

)},(][],[min{][ vuwudistvdistvdist +=

s p1 v p2 p3 pk 

correct correct 
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l  dist[v] will be right if u is along the shortest path to v 
and dist[u] is correct 

l  How many times do we have to do this for vertex pi 
to have the correct shortest path from s? 
l  i times 

)},(][],[min{][ vuwudistvdistvdist +=

s p1 v p2 p3 pk 

l  dist[v] will be right if u is along the shortest path to v 
and dist[u] is correct 

l  How many times do we have to do this for vertex pi 
to have the correct shortest path from s? 
l  i times 

)},(][],[min{][ vuwudistvdistvdist +=

s p1 v p2 p3 pk 

correct correct 

l  dist[v] will be right if u is along the shortest path to v 
and dist[u] is correct 

l  How many times do we have to do this for vertex pi 
to have the correct shortest path from s? 
l  i times 

)},(][],[min{][ vuwudistvdistvdist +=

s p1 v p2 p3 pk 

correct correct correct 

l  dist[v] will be right if u is along the shortest path to v 
and dist[u] is correct 

l  How many times do we have to do this for vertex pi 
to have the correct shortest path from s? 
l  i times 

)},(][],[min{][ vuwudistvdistvdist +=

s p1 v p2 p3 pk 

correct correct correct correct 
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l  dist[v] will be right if u is along the shortest path to v 
and dist[u] is correct 

l  How many times do we have to do this for vertex pi 
to have the correct shortest path from s? 
l  i times 

)},(][],[min{][ vuwudistvdistvdist +=

s p1 v p2 p3 pk 

correct correct correct correct … 

l  dist[v] will be right if u is along the shortest 
path to v and dist[u] is correct 

l  What is the longest (vetex-wise) the path from 
s to any node v can be? 
l  |V| - 1 edges/vertices 

)},(][],[min{][ vuwudistvdistvdist +=

s p1 v p2 p3 pk 

correct correct correct correct … 

Bellman-Ford algorithm Bellman-Ford algorithm 

Initialize all the 
distances 

iterate over all 
edges/vertices and 
apply update rule 

do it |V| -1 times 
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Bellman-Ford algorithm 

check for negative 
cycles 

Negative cycles 
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What is the shortest path 
from a to e?  

Bellman-Ford algorithm Bellman-Ford algorithm 
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How many edges is 
the shortest path 
from s to: 
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Bellman-Ford algorithm 
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How many edges is 
the shortest path 
from s to: 

A: 3 

Bellman-Ford algorithm 
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How many edges is 
the shortest path 
from s to: 

A: 3 

B: 
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How many edges is 
the shortest path 
from s to: 

A: 3 

B: 5 
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Bellman-Ford algorithm 
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How many edges is 
the shortest path 
from s to: 

A: 3 

B: 5 

D: 7 
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Iteration: 0 

Bellman-Ford algorithm 
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Iteration: 1 

Bellman-Ford algorithm 

G 

S 

F 

E 

A 

D 

B 

C 

10 

8 

1 

-1 

-1 

3 

1 

1 

2 

-2 

-4 

0 10 

∞ 

∞ 

∞ 12 

9 

8 

Iteration: 2 



4/19/12 

9 

Bellman-Ford algorithm 

G 

S 

F 

E 

A 

D 

B 

C 

10 

8 

1 

-1 

-1 

3 

1 

1 

2 

-2 

-4 

0 5 

10 

∞ 

∞ 8 

9 

8 

Iteration: 3 

A has the correct 
distance and path 

Bellman-Ford algorithm 
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Iteration: 4 

Bellman-Ford algorithm 
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Iteration: 5 

B has the correct 
distance and path 

Bellman-Ford algorithm 
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Bellman-Ford algorithm 
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Iteration: 7 

D (and all other 
nodes) have the 
correct distance 
and path 

Correctness of Bellman-Ford 
Loop invariant: 

Correctness of Bellman-Ford 
Loop invariant: After iteration i, all vertices with 
shortest paths from s of length i edges or less have 
correct distances 

Runtime of Bellman-Ford 

O(|V| |E|) 
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Runtime of Bellman-Ford 

Can you modify the algorithm to run 
faster (in some circumstances)? 

All pairs shortest paths 

l  Simple approach 
l  Call Bellman-Ford |V| times 
l  O(|V|2 |E|) 

l  Floyd-Warshall – Θ(|V|3) 
l  Johnson’s algorithm – O(|V|2 log |V| + |V| |E|) 

Minimum spanning trees 
l  What is the lowest weight set of edges that connects all 

vertices of an undirected graph with positive weights 

l  Input: An undirected, positive weight graph, G=(V,E) 

l  Output: A tree T=(V,E’) where E’ ⊆ E that minimizes 

∑
∈

=
'

)(
Ee

ewTweight

MST example 
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MSTs 

Can an MST have a cycle? 
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MSTs 

Can an MST have a cycle? 
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Applications? 

l  Connectivity 
l  Networks (e.g. communications) 
l  Circuit design/wiring 

l  hub/spoke models (e.g. flights, 
transportation) 

l  Traveling salesman problem? 

Algorithm ideas? 
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Cuts 
l  A cut is a partitioning of the vertices into two sets S 

and V-S 
l  An edge “crosses” the cut if it connects a vertex 

u∈V and v∈V-S 
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Minimum cut property 
Given a partion S, let edge e be the minimum 
cost edge that crosses the partition.  Every 
minimum spanning tree contains edge e. 

Prove this! 

Minimum cut property 
Given a partion S, let edge e be the minimum 
cost edge that crosses the partition.  Every 
minimum spanning tree contains edge e. 

S V-S 

e’ 

e 

Consider an MST with edge e’ that is not the minimum edge 

Minimum cut property 
Given a partion S, let edge e be the minimum 
cost edge that crosses the partition.  Every 
minimum spanning tree contains edge e. 

S V-S 

e’ 

e 

Using e instead of e’, still connects the graph, 
but produces a tree with smaller weights 
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Kruskal’s algorithm 
Given a partition S, let edge e be the minimum cost 
edge that crosses the partition.  Every minimum 
spanning tree contains edge e. 

Kruskal’s algorithm 
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Kruskal’s algorithm 
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Kruskal’s algorithm 
Add smallest edge that connects 
two sets not already connected 
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Kruskal’s algorithm 
Add smallest edge that connects 
two sets not already connected 
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Kruskal’s algorithm 
Add smallest edge that connects 
two sets not already connected Correctness of Kruskal’s 

l  Never adds an edge that connects already connected 
vertices 

l  Always adds lowest cost edge to connect two sets.  By 
min cut property, that edge must be part of the MST 
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Running time of Kruskal’s Running time of Kruskal’s 

|V| calls to MakeSet 

O(|E| log |E|) 

2 |E| calls to FindSet 

|V| calls to Union 

Running time of Kruskal’s 

Disjoint set data structure 
O(|E| log |E|) + 

MakeSet FindSet 
|E| calls 

Union 
|V| calls 

Total 

Linked lists |V| O(|V| |E|) |V| O(|V||E| + |E| log |E|) 

O(|V| |E|) 

Linked lists + 
heuristics 

|V| O(|E| log |V|) |V| O(|E| log |V|+ |E| log |E|) 

O(|E| log |E| ) 

Prim’s algorithm 
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Prim’s algorithm Prim’s algorithm 

Prim’s algorithm 
Start at some root node and build out the MST by 
adding the lowest weighted edge at the frontier 

Prim’s 
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Prim’s 
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Prim’s 
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Correctness of Prim’s? 

l  Can we use the min-cut property? 
l  Given a partion S, let edge e be the minimum cost 

edge that crosses the partition.  Every minimum 
spanning tree contains edge e. 

l  Let S be the set of vertices visited so far 
l  The only time we add a new edge is if it’s the 

lowest weight edge from S to V-S 
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Running time of Prim’s Running time of Prim’s 

Θ(|V|) 

Θ(|V|) 

|V| calls to Extract-Min 

|E| calls to Decrease-Key 

Running time of Prim’s 

Same as Dijksta’s algorithm 

1 MakeHeap |V| ExtractMin |E| DecreaseKey Total 

Array O(|V|) O(|V|2) O(|E|) O(|V|2) 

Bin heap O(|V|) O(|V| log |V|) O(|E| log |V|) O((|V|+|E|) log |V|) 

Fib heap O(|V|) O(|V| log |V|) O(|E|) O(|V| log |V| + |E|) 

O(|E| log |V|) 

Kruskal’s: O(|E| log |E| ) 

 


