
4/3/12

1

Greedy algorithms

David Kauchak
cs302

Spring 2012

Administrative

l  Should be all caught up on grading
l  Assignment out today (back to the normal

routine)

Interval scheduling

l  Given n activities A = [a1,a2, .., an] where
each activity has start time si and a finish
time fi. Schedule as many as possible of
these activities such that they don’t conflict.

Interval scheduling

l  Given n activities A = [a1,a2, .., an] where
each activity has start time si and a finish
time fi. Schedule as many as possible of
these activities such that they don’t conflict.

Which activities conflict?

4/3/12

2

Interval scheduling

Given n activities A = [a1,a2, .., an] where
each activity has start time si and a finish
time fi. Schedule as many as possible such
that they don’t conflict.

Which activities conflict?

Simple recursive solution

Enumerate all possible solutions and find
which schedules the most activities

Simple recursive solution
l  Is it correct?

l  max{all possible solutions}
l  Running time?

l  O(n!)

Can we do better?
l  Dynamic programming (next class)

l  O(n2)

l  Greedy solution – Is there a way to repeatedly
make local decisions?
l  Key: we’d still like to end up with the optimal solution

4/3/12

3

Overview of a greedy approach
l  Greedily pick an activity to schedule

l  Add that activity to the answer

l  Remove that activity and all conflicting activities. Call
this A’.

l  Repeat on A’ until A’ is empty

Greedy options

l  Select the activity that starts the earliest, i.e.
argmin{s1, s2, s3, …, sn}?

Greedy options

l  Select the activity that starts the earliest?

non-optimal

Greedy options

l  Select the shortest activity, i.e. argmin{f1-s1,
f2-s2, f3-s3, …, fn-sn}

4/3/12

4

Greedy options

l  Select the shortest activity, i.e. argmin{f1-s1,
f2-s2, f3-s3, …, fn-sn}

non-optimal

Greedy options

l  Select the activity with the smallest number of
conflicts

Greedy options

l  Select the activity with the smallest number of
conflicts

Greedy options

l  Select the activity with the smallest number of
conflicts

4/3/12

5

Greedy options

l  Select the activity that ends the earliest, i.e.
argmin{f1, f2, f3, …, fn}?

Greedy options

l  Select the activity that ends the earliest, i.e.
argmin{f1, f2, f3, …, fn}?

Greedy options

l  Select the activity that ends the earliest, i.e.
argmin{f1, f2, f3, …, fn}?

Greedy options

l  Select the activity that ends the earliest, i.e.
argmin{f1, f2, f3, …, fn}?

4/3/12

6

Greedy options

l  Select the activity that ends the earliest, i.e.
argmin{f1, f2, f3, …, fn}?

Greedy options

l  Select the activity that ends the earliest, i.e.
argmin{f1, f2, f3, …, fn}?

Greedy options

l  Select the activity that ends the earliest, i.e.
argmin{f1, f2, f3, …, fn}?

Greedy options

l  Select the activity that ends the earliest, i.e.
argmin{f1, f2, f3, …, fn}?

4/3/12

7

Greedy options

l  Select the activity that ends the earliest, i.e.
argmin{f1, f2, f3, …, fn}?

Greedy options

l  Select the activity that ends the earliest, i.e.
argmin{f1, f2, f3, …, fn}?

Multiple optimal
solutions

Greedy options

l  Select the activity that ends the earliest, i.e.
argmin{f1, f2, f3, …, fn}?

Greedy options

l  Select the activity that ends the earliest, i.e.
argmin{f1, f2, f3, …, fn}?

4/3/12

8

Efficient greedy algorithm

l  Once you’ve identified a reasonable greedy
heuristic:
l  Prove that it always gives the correct answer
l  Develop an efficient solution

Is our greedy approach
correct?

“Stays ahead” argument:
show that no matter what other solution
someone provides you, the solution provided
by your algorithm always “stays ahead”, in
that no other choice could do better

Is our greedy approach
correct?

l  “Stays ahead” argument
l  Let r1, r2, r3, …, rk be the solution found by our

approach

l  Let o1, o2, o3, …, ok of another optimal solution

l  Show our approach “stays ahead” of any other
solution

…
r1 r2 r3 rk

o1 o2 o3 ok
…

Stays ahead

…
r1 r2 r3 rk

o1 o2 o3 ok
…

Compare first activities of each solution

4/3/12

9

Stays ahead

…
r1 r2 r3 rk

o1 o2 o3 ok
…

finish(r1) ≤ finish(o1)

Stays ahead

…
r2 r3 rk

o2 o3 ok
…

We have at least as much time as
any other solution to schedule the
remaining 2…k tasks

An efficient solution Running time?

Θ(n log n)

Θ(n)

Overall: Θ(n log n)
Better than:

O(n!)
O(n2)

4/3/12

10

Scheduling all intervals

l  Given n activities, we need to schedule all
activities. Goal: minimize the number of
resources required.

Greedy approach?

The best we could ever do is the
maximum number of conflicts for any
time period

Calculating max conflicts
efficiently

3

Calculating max conflicts
efficiently

1

4/3/12

11

Calculating max conflicts
efficiently

3

Calculating max conflicts
efficiently

1

Calculating max conflicts
efficiently

…

Calculating max conflicts

4/3/12

12

Correctness?
We can do no better then the max
number of conflicts. This exactly counts
the max number of conflicts.

Runtime?

O(2n log 2n + n) = O(n log n)

Horn formulas
l  Horn formulas are a particular form of boolean

logic formulas
l  They are one approach to allow a program to do

logical reasoning

l  Boolean variables: represent some event
l  x = the murder took place in the kitchen
l  y = the butler is innocent
l  z = the colonel was asleep at 8 pm

Implications
l  Left-hand side is an AND of any number of

positive literals
l  Right-hand side is a single literal

x = the murder took place in the
kitchen
y = the butler is innocent
z = the colonel was asleep at 8 pm

If the colonel was asleep at 8 pm and the butler is
innocent then the murder took place in the kitchen

xyz ⇒∧

4/3/12

13

Implications

l  Left-hand side is an AND of any number of
positive literals

l  Right-hand side is a single literal

x = the murder took place in the
kitchen
y = the butler is innocent
z = the colonel was asleep at 8 pm

the murder took place in the kitchen

x⇒

Negative clauses

An OR of any number of negative literals

u = the constable is innocent
t = the colonel is innocent
y = the butler is innocent

ytu ∨∨

not every one is innocent

Goal
l  Given a horn formula (i.e. set of implications and

negative clauses), determine if the formula is
satisfiable (i.e. an assignment of true/false that is
consistent with all of the formula)

x⇒

y⇒

zux ⇒∧

zyx ∨∨

u x y z
0 1 1 0

Goal
l  Given a horn formula (i.e. set of implications and

negative clauses), determine if the formula is
satisfiable (i.e. an assignment of true/false that is
consistent with all of the formula)

x⇒

y⇒

zyx ⇒∧

zyx ∨∨

u x y z
not satifiable

4/3/12

14

Goal
l  Given a horn formula (i.e. set of implications and

negative clauses), determine if the formula is
satisfiable (i.e. an assignment of true/false that is
consistent with all of the formula)

x⇒

yx⇒
wzx ⇒∧

yxw ∨∨

?

wyx ⇒∧
xzyw ⇒∧∧

Goal
l  Given a horn formula (i.e. set of implications and

negative clauses), determine if the formula is
satisfiable (i.e. an assignment of true/false that is
consistent with all of the formula)

zux ⇒∧

zyx ∨∨

implications tell us to set
some variables to true

negative clauses encourage
us make them false

A brute force solution

l  Try each setting of the boolean variables and
see if any of them satisfy the formula

l  For n variables, how many settings are
there?
l  2n

A greedy solution?

x⇒

yx⇒
wzx ⇒∧

yxw ∨∨wyx ⇒∧
xzyw ⇒∧∧

w 0

x 0

y 0

z 0

4/3/12

15

A greedy solution?

x⇒

yx⇒
wzx ⇒∧

yxw ∨∨wyx ⇒∧
xzyw ⇒∧∧

w 0

x 1

y 0

z 0

A greedy solution?

x⇒

yx⇒
wzx ⇒∧

yxw ∨∨wyx ⇒∧
xzyw ⇒∧∧

w 0

x 1

y 1

z 0

A greedy solution?

x⇒

yx⇒
wzx ⇒∧

yxw ∨∨wyx ⇒∧
xzyw ⇒∧∧

w 1

x 1

y 1

z 0

A greedy solution?

x⇒

yx⇒
wzx ⇒∧

yxw ∨∨wyx ⇒∧
xzyw ⇒∧∧

w 1

x 1

y 1

z 0

not satisfiable

4/3/12

16

A greedy solution A greedy solution

set all variables of
the implications of
the form “⇒x” to true

A greedy solution

if the all variables of
the lhs of an
implication are true,
then set the rhs
variable to true

A greedy solution

see if all of the
negative clauses are
satisfied

4/3/12

17

Correctness of greedy solution

l  Two parts:
l  If our algorithm returns an assignment, is it a valid

assignment?
l  If our algorithm does not return an assignment,

does an assignment exist?

Correctness of greedy solution

l  If our algorithm returns an assignment, is it a
valid assignment?

Correctness of greedy solution

l  If our algorithm returns an assignment, is it a
valid assignment?

explicitly check all
negative clauses

Correctness of greedy solution

l  If our algorithm returns an assignment, is it a
valid assignment?

don’t stop until all
implications with all
lhs elements true
have rhs true

4/3/12

18

Correctness of greedy solution

l  If our algorithm does not return an
assignment, does an assignment exist?

Our algorithm is
“stingy”. It only
sets those variables
that have to be
true. All others
remain false.

Running time?

?

Running time?

O(nm)

n = number of
variables

m = number of
formulas

Knapsack problems:
Greedy or not?

l  0-1 Knapsack – A thief robbing a store finds n items
worth v1, v2, .., vn dollars and weight w1, w2, …, wn
pounds, where vi and wi are integers. The thief can
carry at most W pounds in the knapsack. Which items
should the thief take if he wants to maximize value.

l  Fractional knapsack problem – Same as above, but
the thief happens to be at the bulk section of the store
and can carry fractional portions of the items. For
example, the thief could take 20% of item i for a weight
of 0.2wi and a value of 0.2vi.

