3/22/12

Hashtables

Administrative

e Midterm
o must take it by Friday at 6pm

. YY) e No assignment over the break
David Kauchak |eeee
o000
cs302 |eoo
o0
Spring 2012 | @
Hashtables 3 Key/data pair

e Constant time insertion and search (and deletion in
some cases) for a large space of keys

e Applications
o Does x belong to S?

I've found them very useful

compilers

databases

search engines

storing and retrieving non-sequential data

save memory over an array

e The key is a numeric representation of a relevant
portion of the data

e For example:

data key

-

3/22/12

Key/data pair : Key/data pair 3
e The key is a numeric representation of a relevant e The key is a numeric representation of a relevant
portion of the data portion of the data

e For example: e For example:

data key data o E'r's?‘;"n‘i, key

ascii code last name

Why not just arrays aka it
direct-address tables? : Why not just arrays?

array must be as large
as the universe of keys

A

Array

array must be as large
as the universe of keys

space of actual keys is
often much smaller than
the actual keys

S

Array

3/22/12

Why not arrays?

e Think of indexing all last names < 10 characters

o Census listing of all last names
http://www.census.gov/genealogy/names/dist.all.last

88,799 last names

e What is the size of our space of keys?
260 = a big number

o Not feasible!

o Even if it were, not space efficient

The load of a table/hashtable |

m = number of possible entries in the table
n = number of keys stored in the table
a =n/m is the load factor of the hashtable

What is the load factor of the last example?

o a=88,799/ 26" would be the load factor of last
names using direct-addressing

e The smaller a, the more wasteful the table
e The load also helps us talk about run time

Hash function, h :

e A hash function is a function that maps the
universe of keys to the slots in the hashtable

hash function, h

m << |U]|

Hash function, h :

e A hash function is a function that maps the
universe of keys to the slots in the hashtable

hash function, h

m << [U]|

3/22/12

Hash function, h tH Hash function, h tH
e A hash function is a function that maps the e What can happen if m # |U|?

universe of keys to the slots in the hashtable

hash function, h hash function, h

EEEE B Een sEssEEEy m<< U]
0000 000
00 00
- H - H
Collisions : Collisions :
e If m # |U|, then two keys can map to the same position in .
the hashtable (pidgeonhole principle) e A collision occurs when h(x) = h(y), but x # y

e A good hash function will minimize the
number of collisions

e Because the number of hashtable entries is
less than the possible keys (i.e. m < |U|)
collisions are inevitable!

hash function, h . . .
e Collision resolution techniques?

m << |U|

3/22/12

Collision resolution by chaining
e Hashtable consists of an array of linked lists

O ‘ n

| | I
HENIIEEENLYENLEE

e When a collision occurs, the element is added to
linked list at that location

Insertion

CHAINEDHASHINSERT(T), z)
insert z at the head of list T'[h(z)]

ChainedHashinsert([l)

e If two entries x # y have the same hash value h(x) = . .
h(x), then T(h(x)) will contain a linked list with both
values I !
LI f
00 00
00 (I3d
o0 (L.
L d L]
Insertion Insertion

CHAINEDHASHINSERT(T), z)
insert z at the head of list T'[h(z)]

hash function is a mapping from
the key to some value <m

h(il)

CHAINEDHASHINSERT(T), z)
insert z at the head of list T'[h(z)]

h(il)

3/22/12

Deletion

CHAINEDHASHINSERT(T), z)
insert(z)at the head of list T'[h(z)]

x is a reference not the value, why?

Remember, we’re hashing based on a
numeric representation of the actual
underlying data

Deletion

CHAINEDHASHDELETE(T,)
delete z from the list T'[h(key|[z])]

P

|
HEENEERUEEEEEEN

Deletion H Search H

CHAINEDHASHDELETE(T,)
delete z from the list T[h(key|[z])]

CHAINEDHASHSEARCH(T, z)
search for z in list T'[h(z)]

ChainedHashSearch(Jll)

3/22/12

Search 3 Search o
CHAINEDHASHSEARCH(T,) CHAINEDHASHSEARCH(T,)
search for z in list T'[h(z)] search for z in list T'[h(z)]
h(Il) ChainedHashSearch([il])
: :
ﬁ H O — ﬁ H O
t t

Search
CHAINEDHASHSEARCH(T, z)
search for z in list T'[h(z)]

ChainedHashSearch(Jll)
:
ﬁ B O

Search
CHAINEDHASHSEARCH(T,)
search for z in list T'[h(z)]

ChainedHashSearch(Jll)

u
.

*

t

3/22/12

Running time

CHAINEDHASHINSERT(T), z) o(1)
insert z at the head of list T'[h(z)]

CHAINEDHASHDELETE(T, z)
delete z from the list T'[h(key|[z])]

O(length of the chain)

CHAINEDHASHSEARCH(T), z)

search for z in list T'[h(z)] O(length of the chain)

Length of the chain

e Worst case?

Length of the chain

o Worst case?
o All elements hash to the same location
e hk)=4

e O(n) B
I

Length of the chain

e Average case
o Depends on how well the hash function distributes
the keys
e What is the best we could hope for a hash function?

simple uniform hashing: an element is equally likely to
end up in any of the m slots

e Under simple uniform hashing what is the average
length of a chain in the table?
nkeysovermslots=n/m=a

3/22/12

Average chain length

e If you roll a fair m sided die n times, how many
times are we likely to see a given value?

e For example, 10 sided die:
e 1time
1/10
e 100 times
100/10 = 10

Search average running time

e Two cases:
o Key is not in the table
must search all entries
a)
o Key is in the table
on average search half of the entries
O(1+a)

Hash functions

e \What makes a good hash function?
o Approximates the assumption of simple uniform hashing
o Deterministic — h(x) should always return the same value
o Low cost — if it is expensive to calculate the hash value
(e.g. log n) then we don’ t gain anything by using a table
e Challenge: we don’t generally know the distribution
of the keys

o Frequently data tend to be clustered (e.g. similar strings,
run-times, SSNs). A good hash function should spread
these out across the table

Hash functions

What are some hash functions
you’ve heard of before?

3/22/12

Division method
e h(k) =k mod m

m k h(k)
11 25 3
111 1
117 6
13 133 3
13 7 7
13 25 12

Division method

e Don’ t use a power of two. Why?

m k bin(k) h(k)
8 25 11001 1
8 1 00001 1

8 17 10001 1

e if h(k) = k mod 2P, the hash function is just
the lower p bits of the value

Division method

e Good rule of thumb for m is a prime number
not to close to a power of 2

e Pros:
e quick to calculate
o easy to understand

e Cons:

o keys close to each other will end up close in the
hashtable

Multiplication method
e Multiply the key by a constant0 <A <1 and

extract the fractional part of kA, then scale by m
to get the index

(k) = |mkd - kA) |
/

extracts the fractional
portion of kA

10

3/22/12

Multiplication method
h(k) = |m(kA - | kA])|
e Common choice is for m as a power of 2 and
A=(/5-1)/2=0.6180339887

e Why a power of 2?
e Book has other heuristics

Multiplication method

k A kA h(k)

15 0.618 9.27 floor(0.27*8) = 2
23 0.618 14.214 floor(0.214*8) = 1
100 0.618 61.8 floor(0.8*8) = 6

© o |3

h(k) = |m(kA - kA])|

Other hash functions

e cyclic redundancy checks (i.e. disks, cds, dvds)
e Checksums (i.e. networking, file transfers)
e Cryptographic (i.e. MD5, SHA)

Open addressing

e Keeping around an array of linked lists can be
inefficient and a hassle

e Like to keep the hashtable as just an array of
elements (no pointers)

e How do we deal with collisions?
» compute another slot in the hashtable to examine

1

3/22/12

Hash functions with
open addressing Probe sequence

e Hash function must define a probe sequence which is
the list of slots to examine when searching or inserting h(k 0)
3

e Hash function takes an additional parameter / which is
the number of collisions that have already occurred

e The probe sequence must be a permutation of every
hashtable entry. Why?

(k,0), h(k,1), h(k,2), ..., h(k, m-1) } is a permutation of

{ h(k,0),
{0.1.2.3, ... m1} EE BEEE BN

Probe sequence : Probe sequence :
h(k, 1) h(k, 2)
I:I:_IIII-III I:I:_IIII-III

12

3/22/12

Probe sequence Probe sequence
h(k, 3) h(k, ...)
must visit all locations
HEE __BHEEE BEEN HEE __EEEE BEEN
Open addressing: Insert Open addressing: Insert
HAsH-INSERT(T), k) HasH-INSERT(T), k)
1 i<0 1 i<0 get the first hashtable
2 j« h(k,i) 2 j « h(k,i) entry to look in
3 while i <m — 1 and T'[j] # null 3 while i <m — T and Tj] # null
4 i—i+1 4 te—i+1
5 j — h(k,7) 5 j <« h(k,1)
6 if T[j] = null 6 if T[j] = null
7 return j 7 return j
8 else 8 else
9 error “hash is full” 9 error “hash is full”

13

3/22/12

o000
00
o0
L]
Open addressing: Insert Open addressing: Insert

HAsH-INSERT(T), k) HasH-INSERT(T), k)

1 i<0 1 i<0

2 j < h(k,3) 2 j« h(k,7)

3 while i <m—1 and T[j] # null follow the probe 3 while i <m —1 and T[j] # null

4 ie—i+1 sequence until we find 4 ie—i+1

5 j — h(k,1) an open entry 5 j «— h(k,1)

6 if T[j] = null 6 if T[j] = null return the open entry

7 return j 7 return j

8 else 8 else

9 error “hash is full” 9 error “hash is full”
00
(I3d
(L.
L]

Open addressing: Insert

HAsH-INSERT(T), k)

1 i+0

2 j« h(k,7)

3 while i <m — 1 and T'[j] # null

4 ie—i+1

5 j — h(k,7)

6 if T[j] = null

7 return j

8 else

9 error “hash is full” hashtable can fill up

Open addressing: search

HasH-SEARCH(T, k)

1 i<0

2 j« h(k,i)

3 while i <m —1 and T[j] # null and T[j] # k
4 ie—i+1

5 §— h(k,4)

6 if T[j]=k

7 return j

8 else

9 return null

14

3/22/12

o000 o000
00 00
o0 o0
Ld L]
Open addressing: search Open addressing: search

HAsH-SEARCH(T, k) HasH-INSERT(T, k) HasH-SEARCH(T, k) HasH-INSERT(T, k)

1 i<0 1 <0 1 i<0 1 i<0

2§« h(k,i) 2 j— h(k,i) 2§« h(ki) 2 j— h(k,i)

3 while < m—1 and T[j] # null and 3 while i <m—1 and T[j] £ null 3 whilei<m—1and Dand T[j] £k 3 whﬂekm,l{md

4 it 4 it 4 ieitl 4 i—itl

S S hED) 5 3= hlk,1) I A CR 5 J e hki)

6 TG =k 6 if T(j] = null 6 T =k 6 if T(j] = null

7 return j 7 return j 7 return j 7 return j

8 else 8 else 8 else 8 else

9 return null 9 error “hash is full”® 9 return null 9 error “hash is full”

“breaks” the probe sequence

00 00
00 (I3d
o0 (L.
L d L]

Open addressing: delete

e Two options:

o mark node as “deleted” (rather than null)

modify search procedure to continue looking if a
“deleted” node is seen

modify insert procedure to fill in “deleted” entries
increases search times
o if a lot of deleting will happen, use chaining

Probing schemes

e Linear probing — if a collision occurs, go to the next slot
o h(k,i) = (h(k) +i) mod m
e Does it meet our requirement that it visits every slot?
o for example, m =7 and h(k) = 4

15

3/22/12

Linear probing: search : Linear probing: search :
h(M, 0) h(M, 1)
EI:I_III-III D:_]III-III

Linear probing: search : Linear probing: search :
h(I, 2) h(M, 3)
EI:_]III-III D:_]III-III

16

3/22/12

[1X) (X1X)
(11 (1X]
o0 o0
L] L]
Linear probing: search Linear probing
e Problem:
h(, 3) o primary clustering — long rungs of occupied slots
tend to build up and these tend to grow
L1
[[]
] any value here results in an become more and more probable
increase in the cluster for a value to end up in that range
[1X) ([X1X)
(11 (1X]
o0 o0
L] °

Quadratic probing

e h(k,i) = (h(k) + c4i + c,i?) mod m

e Rather than a linear sequence, we probe based on a
quadratic function

e Problems:

e must pick constants and m so that we have a proper probe
sequence

if h(x) = h(y), then h(x,i) = h(y,i) for all i
secondary clustering

Double hashing

e Probe sequence is determined by a second
hash function

o h(k,i) = (hy(k) + i(h,(k)) mod m

e Problem:
o h,(k) must visit all possible positions in the table

17

3/22/12

Running time of insert and
search for open addressing

e Depends on the hash function/probe sequence

e Worst case?

e O(n) — probe sequence visits every full entry first
before finding an empty

Running time of insert and
search for open addressing

e Average case?
e We have to make at least one probe

Running time of insert and
search for open addressing

e Average case?

e What is the probability that the first probe will not
be successful (assume uniform hashing function)?

a

Running time of insert and
search for open addressing

e Average case?

e What is the probability that the first two probed
slots will not be successful?

~02
‘o

18

3/22/12

Running time of insert and
search for open addressing

e Average case?

e What is the probability that the first three probed
slots will not be successful?

Running time of insert and
search for open addressing

e Average case: expected number of probes

o sum of the probability of making 1 probe, 2
probes, 3 probes, ...

E[probes]=1+a+a’ +a’ +...

m i
= S a
i=0

*© i
< a
i=0

T
R

Average number of probes

E[probes] =
l-a

e Average number of searches
01 1/1-.1) =111

025 1/(1-.25)=1.33

05 1/(1—.5)=2

075 1/(1-.75)=4

09 1/1-.9=10

095 1/(1-.95)=20

099 1/(1-.99) =100

How big should a hashtable be? §

e A good rule of thumb is the hashtable should
be around half full
e What happens when the hashtable gets full?
e Copy: Create a new table and copy the values over
results in one expensive insert
simple to implement
o Amortized copy: When a certain ratio is hit, grow
the table, but copy the entries over a few at a time
with every insert

no single insert is expensive and can guarantee per insert
performance

more complicated to implement

19

