3/20/12

David Kauchak
cs312

Review

+_ .
Midterm

m Will be posted online this afternoon

= You will have 2 hours to take it
= watch your time!
= if you get stuck on a problem, move on and come back

m Must take it by Friday at 6pm

= You may use:
= your book
= your notes
= the class notes
= ONLY these things

m Do NOT discuss it with anyone until after Friday at 6pm

+
Midterm

mGeneral
= what is an algorithm
= algorithm properties
= pseudocode
= proving correctness
= run time analysis
= memory analysis

+
Midterm

mBig O
= proving bounds
= ranking/ordering of functions

m Amortized analysis

m Recurrences
= solving recurrences
m substitution method
m recursion-tree
= master method

3/20/12

+ . +
Midterm Midterm
= Sorting = Divide and conquer
. . = divide up the data (often in half)
= insertion sort » recurse
= merge sort = possibly do some work to combine the answer
m quick sort m Calculating order statistics/medians
= partition function = Basic data structures
= bubble sort = set operations
= array
= heap sort = linked lists
= stacks
= queues
+ +
Midterm Midterm
m Heaps m Other things to know:

= binary heaps
= binomial heaps

m Search trees
= BSTs
= B-trees

= run-times (you shouldn’t have to look all of them up, though I don’t
expect you to memorize them either)

= when to use an algorithm
= proof techniques

= look again an proofs by induction

3/20/12

+ +
Data structures so far Data structures so far
= When would we use: u When would we use:

= Arrays = binary heap
m get and set particular indices in constant time = max/min in log time

= linked list = binomial heap
m insert and delete in constant time = max/min in log time

= stack m supports the union operation
u LIFO = BST

= queue m search in log time

» FIFO = B-Tree
m search on disk in log disk accesses

+ +
Recurrences: three approaches Substitution method

m Substitution method: when you have a good gu m Guess the form of the solution

of the solution, prove that it's correct
m Then prove it’s correct by induction

mRecursion-tree method: If you don’t have a good
guess, the recursion tree can help. Then solve with T(n) = T(l’l / 2) + d
substitution method.

m Halves the input then constant amount of work

m Master method: Provides solutions for recurrences = Similar to binary search:
of the form:

T(n)=aT(n/b)+ f(n) Guess: O(log, n)

3/20/12

+
Proof?

T(n)=T(n/2)+d=0(og,n)?

Proof by induction!
- Assume it’s true for smaller T(k)
- prove that it’s then true for current T(n)

T(n)=T(n/2)+d

m Assume T(k) = O(log, k) forallk <n
m Show that T(n) = O(log, n)

m From our assumption, T(n/2) = O(log, n):

there exists positive constants ¢ and # such that

Olg(m) = {f(n): 0= f(n)=cg(n)foralln=n,

mFrom the definition of O: T(n/2) < c log,(n/2)

}

N T(n)=T(n/2)+d

m To prove that T(n) = O(log, n) we need to identify the
appropriate constants:

O(g(m) = {f(n):

there exists positive constants ¢ and n such that
0= f(n)scg(n)foralln=n,

i.e. some constant ¢ such that T(n) < c log, n

T(n)=T(n/2)+d
=clog,(n/2)+d

=clog,n-clog,2+d

=clog, n residual

* T(n)=T(n-1)+n

m Guess the solution?

m At each iteration, does a linear amount of work (i.e. iterate over the
and reduces the size by one at each step

= O(n?)

m Assume T(k) = O(kK?) forallk<n
® again, this implies that T(n-1) < c(n-1)?

mShow that T(n) = O(n?),i.e. T(n) < cn?

3/20/12

+ T(n)=T(n-1)+n
sc(n-17+n
=c(n*-2n+1)+n

=cn 2 residual

=cn?
if -2cn+c+n<0
-2cn+c<-n
c(-2n+l)=-n
n

c=

2n-1
which holds for 1

c=
any ¢ 21 forn =1 2-1/n

+ Changing variables

T(n) =2T(/n)+logn
m Guesses?

m We can do a variable change: let m =log, n
(or n =2m)

T(2")=2T(2""*)+m

m Now, let S(m)=T(2™)

S(m)=28(m/2)+m

+ Changing variables
S(m)=28(m/2)+m
m Guess? S(m) = O(mlogm)
T(n) =T(2"™) = S(m) = O(mlog m)
substituting m=log n

T'(n) = O(log nloglogn)

+
Recurrences ‘I

T(n)=2T(n/3)+d T(n)=7T(n/7)+n

if f(n) = O(n'"*“) for & > 0, then T'(n) = ©(n""**)

if £(n) = ©(n'**), then T(n) = O(n"*** logn)

if f(n) = Q(n"****)for & > 0and af (n/b) s ¢f (n) forc <1
then 7(n) = ©(f (n))

T(n)=T(n-1)+logn T(n)=8T(n/2)+n’

3/20/12

+ +
Binary Search Trees Example

m BST - A binary tree where a parent’s value is greater than
values in the left subtree and less than or equal to all the
values in the right subtree

leftTree(i) <i < rightTree(i)

m the left and right children are also binary trees

m Why not?

leftTree(i) <i < rightTree(i)

m Can be implemented with with pointers or an array

+Visiting all nodes +Visiting all nodes

m In sorted order m In sorted order

3/20/12

+Visiting all nodes

m In sorted order

+Visiting all nodes

m In sorted order

+Visiting all nodes

m In sorted order

+Visiting all nodes

m What's happening?

3/20/12

+Visiting all nodes

m In sorted order

5,8,9,12,14

+Visiting all nodes

m In sorted order

5,8,9,12,14,20

+
Visiting all nodes in order

INORDERTREEWALK(z)

1 if z # null

2 INORDERTREEWALK(LEFT(z))
3 print z

4 INORDERTREEWALK(RIGHT(z))

+
Visiting all nodes in order

INORDERTREEWALK(z)

1 if 2 # null

2 INORDERTREEWALK(LEFT(z))
‘3 print z

4 INORDERTREEWALK(RIGHT(z))

any operation

3/20/12

+Is it correct?

INORDERTREEWALK()

1 if z # null

2 INORDERTREEWALK(LEFT(z))
3 print

4 INORDERTREEWALK(RIGHT(z))

m Does it print out all of the nodes in sorted order?

left(i) < i< right(i)

+ Runn].ng tlme? INORDERTREEWALK(z)

1 if 2 # null
2 INORDERTREEWALK(LEFT())
3 print

4 INORDERTREEWALK(RIGHT(z))

= How much work is done for each call?

= How many calls?

= O(n)

+
What about?

TREEWALK(X)

1 if o # null

9 print =

3 TREEWALK(LEFT(2))
4 TREEWALK(RIGHT(z))

+Preorder traversal

EEWALK(X)

1if o # null

=W o

12,8,5,9, 14,20

print 2
TREEWALK(LEFT(z))
TREEWALK(RIGHT(2))

3/20/12

+
What about?

TREEWALK(X)

+Postorder traversal

5,9,8,20, 14,12

TREEWALK(X)

W

if @ # null

TREEWALK(LEFT(2))
TREEWALK(RIGHT(x))

print o

1 if = 5 null
2 TREEWALK(LEFT(2))
3 TREEWALK(RIGHT(2))
4 print =
+_. . +_. .
Binomial Tree Binomial Tree
B, B, B,
o
B, is a binomial tree B, ; with Height’?
the addition of a left child with veo B
another binomial tree B, o
H(B,) = 1
H(By) =1+ H(B) =k
L1t L1 1t
Bo B1 BZ BS Bq Bﬂ Bl Bz 33 Bd

10

3/20/12

+_. .
Binomial Tree

+
Binomial Heap

mBinomial heap Vuillemin, 1978.

Bk
Sequence of binomial trees that satisfy binomial heap property:
What are the children of m each tree is min-heap ordered
the root? 500 B, m top level: full or empty binomial tree of order k
m which are empty or full is based on the number of elements
k binomial trees: ®
Byt Beos .y By
L1t
B, B, B, B, B, B, B, B,

+
Binomial Heap: Properties

How many heaps?
O(log n) — binary number representation

P

B,

+_. . .
Binomial Heap: Properties
Where is the max/min?

Must be one of the
roots of the heaps

B,

11

3/20/12

+
Binomial Heap: Properties

Runtime of max/min?

O(log n)

+
Binomial Heap: Properties
Height?

floor(log, n)
- largest tree = B4
- height of that tree is log n

+
Binomial Heap: Union
mHow can we merge two binomial tree heaps of the same size
(@92
m connect roots of H' and H"
m choose smaller key to be root of H

Runtime? O(1)

+
Binomial Heap: Union

-
R

What if they’re not they’re not the
simple heaps of size 2k?

12

3/20/12

+
Binomial Heap: Union

Go through each tree size starting at 0 and merge as we go

+
Binomial Heap: Union

L q8
+ A1, o
: !
21|, SR
1

13

3/20/12

‘oo %o

®

+
Binomial Heap: Union

Analogous to binary addition

mRunning time?
= Proportional to number of trees in root lists 2 O(log, N)
= O(log N)

1 1 1

o -

14

3/20/12

+
Binomial Heap: Delete Min/Max

We can find the min/max in O(log n).
How can we extract it?

Hint: B, consists of
binomial trees:
By.1, Bigs -+ By

+
Binomial Heap: Delete Min

m Delete node with minimum key in binomial heap H.
= Find root x with min key in root list of H, and delete
= H' < broken binomial trees
= H < Union(H', H)

H H
+_. . +_. .
Binomial Heap: Decrease Key Binomial Heap: Delete
m Just call Decrease-Key/Increase-Key of Heap
= Suppose X is in binomial tree B,
= Bubble node x up the tree if x is too small mDelete node x in binomial heap H
m Decrease key of x to -
= Running time: O(log N) m Delete min
= Proportional to depth of node x .
- mRunning time: O(log N)
H

15

3/20/12

+ +
Binomial Heap: Insert Heaps
Binary heap Binomial heap Fibonacci heap
Procedure (worst-case) (worst-case) (amortized)
mInsert a new node x into binomial heap H BuiLp-HEAP O(n) O(n) O(n)
= H' < MakeHeap(x) I\AZSERT @gtg)n) ggogn; 28
. , MAXIMUM ogn,
= H < Union(H, H) EXTRAC-MAX O(logn) O(logn) O(logn)
UNION O(n) O(logn) o(1)
o . ° INCREASE-ELEMENT ~ O(logn) O(logn) o(1)
=Running time. O(log N) DELETE O(logn) O(logn) O(logn)

(adapted from Figure 19.1, pg. 456 [1])

16

