
CS302 - Assignment 2
Due: Tuesday, Feb. 21 at the beginning of class

Hand-in method: paper

http://xkcd.com/399/

1. (6 points) The table below contains actual run times for 6 different
algorithms. The input sizes ranged from 1000 to 32000 seen at the top
of the table. For each of the algorithms, give the θ complexity of the
algorithms based on the running times and include a brief explanation
for your answer.

Algorithm 1000 2000 4000 8000 16000 32000

A1 50 378 3,345 26,300 215,680 1,658,002
A2 99 110 105 976 103 100
A3 60 130 237 501 954 1999
A4 1005 1095 1201 1289 1420 1540
A5 5 21 84 311 1304 5280
A6 10 22 50 108 245 533

1



2. (8 points) Arrange the functions below in ascending order of growth
rate. Specifically, if f(n) = O(g(n)) then f(n) should be before g(n) in
the list. If two functions are asymptotically equal, i.e. f(n) = Θ(g(n))
then note this in the list by including all elements in a set. For exam-
ple, given: n, log n, n+4, and n2 the list would be: log n, (n, n+4), n2.

(32)n 7 5n+ 20 33
n

n 3n n3n n5

n! 3
√

logn nlogn 1
2n log(n+ 5)

106 nn (3n)2 log logn

3. (15 points) Big O

For each of the statements below, state whether it is true or false and
then prove your answer.

(a) 15n3 log n+ 10n2 + 50 is O(n3 log n).

(b) 3n2 − 12n+ 2 is Ω(n3)

(c) 2n+1 is Θ(2n)

(d) 22n is O(2n)

(e) log(n!) is O(n log n) (Hint: compare n! and nn)

4. (5 points) Insertion sort

Inspired by all the cool new sorting algorithms you heard about in
class, you decide to come up with a cool new sorting algorithm called
¡your name here¿sort. You notice that Insertion − Sort seems inef-
ficient in how it finds the correct location to insert the next value.
You decide that rather than linearly searching one at a time to find
the correct place, you’re going to use binary search to find the correct
place. Is this an improvement? If yes, state the running time of this
new algorithm. If no, explain why this is not an improvement. Be
specific and clear.

5. For the following problems, write pseudocode solutions and state the
worse case running time (in terms of Θ or O where appropriate). You
will be graded on the efficiency of your solutions.

(a) (5 points) Given two lists of numbers A and B of lengths m and
n respectively, return the intersection of the lists, i.e. all those

2



numbers in A that also occur in B. You can use procedures that
we’ve discussed in class, but no others (e.g. no hashtables). You
can assume that in any given list, the numbers are unique.

(b) (10 points) Given a sorted list of unique integers A[1...n], deter-
mine if an entry exists such that A[i] = i. If an entry exists,
return the index, otherwise, return null. (Hint: You can do bet-
ter than O(n). Think divide-and-conquer.)

Just for fun

6. (1 brownie point) Given two sorted arrays A and B of lengths m and
n respectively, return the kth smallest element in the union of the two
lists. Your runtime should be in terms of both m and n and should
not depend on k.

3


