
CS302 - Assignment 10
Due: Tuesday, March 20 at the beginning of class

Hand-in method: paper

http://www.stupidinventor.com/2010/03/14/comic-55-happy-pi-day/

1. [8 points] We saw HeapSort which takes the data points, inserts them into a heap and
then repeatedly calls ExractMax to sort the data (recall this was O(n log n)). A similar
sorting algorithm exists for binary search trees called TreeSort: call Insert on each data
item to build a binary search tree, then do an inorder traversal of the data to get the sorted
list.

(a) [3 points] Does it work, i.e. is it guaranteed to always give you data in sorted order?
Give a counterexample or a brief justification of why it’s correct.

(b) [3 points] What are the best, average and worst case running times for this algorithm
assuming you randomize your data before inserting.

(c) [2 points] How do these run-times change if we are using a balanced binary search tree
(e.g. a red-black tree)?

2. [5 points] Suppose we decide to speed up our B-Tree-Search algorithm and use binary
search within a node rather than a linear search. Show that this make the CPU time required
O(logn) independently of how t is chosen.

3. [8 points] We’d like to add some additional functionality to our B-tree. For each of the
functions below, describe succinctly (or write pseudo-code) how to accomplish this and state
the worse-case running time.

(a) [3 points] Find the minimum key in the B-Tree

(b) [5 points] Find the successor of a given key. You can assume that you already have a
reference to the key (i.e. you don’t have to search for it).

1



4. [7 points] Write pseudo-code for a recursive function NumTrees that, given a number n,
computes the number of unique binary search trees that could store the numbers 1 through
n (note, this function would actually give you the number of trees possible for storing any n
unique numbers). For example, NumTrees(4) should return 14, since there are 14 unique
binary search trees that store 1, 2, 3, and 4 (try and list them all out).

Just for fun

Try implementing your function from Problem 4 and see what values you get for larger n.

2


