Extracting Social Networks from Literary Fiction

David K. Elson, Nicholas Dames, Kathleen R. McKeown

Presented by Audrey Lawrence and Kathryn Lingel
Introduction

- Network of 19th century novel's social structures
- Previous hypotheses
- No automated work on many novels
- Construct network based on dialogue
- Evaluate based on network
Related Work

- With computer, word based
 - Identifying author
 - Writing style
 - Lineage of ancient text
- Semantically oriented is rare
 - Sequences in news stories
- Models for novels without computation
- Computation based models:
 - ACE: unstructured text
 - Other structured
Why 19th Century Novels?

- Novelistic innovations
- Actual social changes
 - Revolutions
 - Industry
 - Transportation
- Many theorists, yet no use of many novels
Past Theories

- Bakhtin: "chronotope", quality of interactions change by setting
- Williams: "knowable communities", rural is more connected with less characters but more dialogue
- Moretti: urban communities are more complex and larger and have more interactions without dialogue
Novels

- 60
- By: authorial, historical, generic, sociological, technical
- Over 10 million words
- Urban vs Rural
- 1st person vs 3rd person
Hypotheses

- Inverse correlation between number of characters and amount of dialogue
- Differences are based upon geographical setting
 - Urban: more loose with more characters and less conversation
 - Rural: more tightly bound
Extracting Networks

- Create graphs
 - Characters as vertices
 - Dialogues as edges
 - Weights as amount of dialogue
- Conversation if:
 - Same place and time
 - Turns speaking
 - Mutually aware of one another
- Preprocess text first

Figure 1: Automatically extracted conversation network for Jane Austen’s *Mansfield Park.*
Character Identification

- Chunk names from text
- Stanford Ner tagger to identify noun phrases as people or organizations
- Cluster names
 - generate name variants for each
 - I.e. "Audrey", "Audrey Lawrence", "Ms. Lawrence"
 - or "Kathryn", "Kathryn Lingel", "Ms. Lingel"
 - try to find matches from entity list
Quoted Speech Attribution

- Creation of training and test sets
 - 111,000 words and 3,176 quotes
- 3 annotators for each quote
- Trained to develop a categorizer
 - 5 categories
 - For example, "character trigram" is one with 99% accuracy
 - 5th category encompasses rest
- 57% recall
- 96% accuracy
- Low recall is ok because we are concerned with conversations, not single quotes
- Precision is necessary
- This setup tilts in favor of first hypothesis
Network Construction

- Remove entities mentioned < 3 times or in less than 1% of mentions
- Adjacent if within 300 words and no attributed quotes in between
- Weight is the length of the quote, normalized to length of novel

Figure 1: Automatically extracted conversation network for Jane Austen’s *Mansfield Park*.

Image of Mansfield Park cover
Alternate Methods

- Correlation
 - Divide text into 10 paragraph sections
 - Count mentions
 - Compute Pearson product-moment correlation coefficient
- Spoken Method
 - Count when one refers to another within a quote
Evaluation

- Check accuracy of extraction
- Picked 4-5 random chapters from 4 novels
- Over 10,000 words/novel
- 3 annotators

<table>
<thead>
<tr>
<th>Method</th>
<th>Precision</th>
<th>Recall</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speech adjacency</td>
<td>.95</td>
<td>.51</td>
<td>.67</td>
</tr>
<tr>
<td>Correlation</td>
<td>.21</td>
<td>.65</td>
<td>.31</td>
</tr>
<tr>
<td>Spoken-mention</td>
<td>.45</td>
<td>.49</td>
<td>.47</td>
</tr>
</tbody>
</table>

Table 2: Precision, recall, and F-measure of three methods for detecting bilateral conversations in literary texts.
Data Analysis: Features

- Number of characters/speaking characters
- Variance of distribution of quoted speech
- Number of quotes given number of words
- Number of 3-cliques or 4-cliques
- Average Degree

\[
\frac{\sum_{v \in V} |E_v|}{|V|} = \frac{2|E|}{|V|}
\]

- Graph Density

\[
\frac{\sum_{v \in V} |E_v|}{|V|(|V| - 1)} = \frac{2|E|}{|V|(|V| - 1)}
\]
Data Analysis: Hypothesis Results

- Hypothesis 1: inverse correlation between number of characters and amount of dialogue
 - Not supported
 - Positive correlations found instead
 - Number of characters vs number of quotes

- Hypothesis 2: setting (urban or rural) affects the network
 - Not supported
 - All features were statistically similar
Data Analysis: Results

- Perspective: 1st vs 3rd

Figure 2: The average degree for each character as a function of the novel’s setting and its perspective.

Figure 3: Conversational networks for first-person novels like Collins’s *The Woman in White* are less connected due to the structure imposed by the perspective.
Literary Analysis

- Narrative voice trumps setting
Conclusion

- Developed system to automatically create social networks from novels
- High precision, low recall
- Found hypotheses were not supported
- Yet correlation between narrative voice and network structure
Questions?