Extracting Social Networks from Literary Fiction

David K. Elson, Nicholas Dames, Kathleen R. McKeown

Presented by Audrey Lawrence and Kathryn Lingel

Introduction

- Network of 19th century novel's social structures
- Previous hypotheses
- No automated work on many novels
- Construct network based on dialogue
- Evaluate based on network

Related Work

With computer, word based

Identifying author
Writing style
Lineage of ancient text

Semantically oriented is rare

Sequences in news stories

Models for novels without computation
Computation based models:

- ACE: unstructured text
- Other structured

Why 19th Century Novels?

- Novelistic innovations
- Actual social changes
 - \circ Revolutions
 - \circ Industry
 - \circ Transportation

Many theorists, yet no use of many novels

Past Theories

- Bakhtin: "chronotope", quality of interactions change by setting
- Williams: "knowable communities", rural is more connected with less characters but more dialogue
- Moretti: urban communities are more complex and larger and have more interactions without dialogue

Novels

- 60
- By: authorial, historical, generic, sociological, technical
- Over 10 million words
- Urban vs Rural
- 1st person vs 3rd person

Hypotheses

- Inverse correlation between number of characters and amount of dialogue
- Differences are based upon geographical setting
 - O Urban: more loose with more characters and less conversation
 - \circ Rural: more tightly bound

Extracting Networks

Create graphs

- Characters as vertices
- Dialogues as edges
- Weights as amount of dialogue
- Conversation if:
 - \circ Same place and time
 - Turns speaking
 - Mutually aware of one another
- Preprocess text first

Character Identification

- Chunk names from text
- Stanford Ner tagger to identify noun phrases as people or organizations
- Cluster names
 - \circ generate name variants for each
 - I.e. "Audrey", "Audrey Lawrence", "Ms. Lawrence"
 - or "Kathryn", "Kathryn Lingel", "Ms. Lingel"
 - $\circ~$ try to find matches from entity list

Quoted Speech Attribution

Creation of training and test sets

 111,000 words and 3,176 quotes

- 3 annotators for each quote
- Trained to develop a categorizer
 - \circ 5 categories
 - For example, "character trigram" is one with 99%
 - accuracy
 - \circ 5th category encompasses rest
- 57% recall
- 96% accuracy
- Low recall is ok because we are concerned with conversations, not single quotes
- Precision is necessary
- This setup tilts in favor of first hypothesis

Network Construction

- Remove entities mentioned
 < 3 times or in less than 1% of mentions
- Adjacent if within 300 words and no attributed quotes in between
- Weight is the length of the quote, normalized to length of novel

Figure 1: Automatically extracted conversation network for Jane Austen's *Mansfield Park*.

Alternate Methods

- Correlation
 - \circ Divide text into 10 paragraph sections
 - \circ Count mentions
 - Compute Pearson product-moment correlation coefficient
- Spoken Method
 - \circ Count when one refers to another within a quote

Evaluation

- Check accuracy of extraction
- Picked 4-5 random chapters from 4 novels
- Over 10,000 words/novel
- 3 annotators

Method	Precision	Recall	F
Speech adjacency	.95	.51	.67
Correlation	.21	.65	.31
Spoken-mention	.45	.49	.47

Table 2: Precision, recall, and F-measure of three methods for detecting bilateral conversations in literary texts.

Data Analysis: Features

- Number of characters/speaking characters
- Variance of distribution of quoted speech
- Number of quotes given number of words
- Number of 3-cliques or 4-cliques
- Average Degree

$$\frac{\sum_{v \in V} |E_v|}{|V|} = \frac{2|E|}{|V|}$$

• Graph Density

$$\frac{\sum_{v \in V} |E_v|}{|V|(|V|-1)} = \frac{2|E|}{|V|(|V|-1)}$$

Data Analysis: Hypothesis Results

- Hypothesis 1: inverse correlation between number of characters and amount of dialogue
 - \circ Not supported
 - \circ Positive correlations found instead
 - Number of characters vs number of quotes
- Hypothesis 2: setting (urban or rural) affects the network
 Not supported
 - \circ All features were statistically similar

Data Analysis: Results

• Perspective: 1st vs 3rd

Figure 2: The average degree for each character as a function of the novel's setting and its perspective.

Figure 3: Conversational networks for first-person novels like Collins's *The Woman in White* are less connected due to the structure imposed by the perspective.

WILKIE COLLINS The Woman in White

Literary Analysis

• Narrative voice trumps setting

GEORGE GISSING

New Grub Street

Conclusion

- Developed system to automatically create social networks from novels
- High precision, low recall
- Found hypotheses were not supported
- Yet correlation between narrative voice and network structure

Questions?

