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PARSING 
David Kauchak 
CS159 – Spring 2011 

some slides adapted from 
Ray Mooney 

Admin 

  Updated slides/examples on backoff with absolute 
discounting (I’ll review them again here today) 

  Assignment 2 

  Watson vs. Humans (tonight-Wednesday) 

Backoff models: absolute discounting 

  Subtract some absolute number from each of 
the counts (e.g. 0.75) 
 will have a large effect on low counts 
 will have a small effect on large counts 

€ 

Pabsolute (z | xy) =

C(xyz) −D
C(xy)

if C(xyz) > 0

α(xy)Pabsolute (z | y) otherwise

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

Backoff models: absolute discounting 

€ 

Pabsolute (z | xy) =

C(xyz) −D
C(xy)

if C(xyz) > 0

α(xy)Pabsolute (z | y) otherwise

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

What is α(xy)? 
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Backoff models: absolute discounting 

€ 

Pabsolute (z | xy) =

C(xyz) −D
C(xy)

if C(xyz) > 0

α(xy)Pabsolute (z | y) otherwise

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

see the dog   1 
see the cat  2 
see the banana  4 
see the man   1 
see the woman 1 
see the car  1 

the Dow Jones  10 
the Dow rose   5 
the Dow fell   5 

p( cat | see the ) = ? 

p( puppy | see the ) = ? 

p( rose | the Dow ) = ? 

p( jumped | the Dow ) = ? 

Backoff models: absolute discounting 

see the dog   1 
see the cat  2 
see the banana  4 
see the man   1 
see the woman 1 
see the car  1 

p( cat | see the ) = ? 

€ 

Pabsolute (z | xy) =

C(xyz) −D
C(xy)

if C(xyz) > 0

α(xy)Pabsolute (z | y) otherwise

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

€ 

2 −D
10

=
2 − 0.75
10

= .125

Backoff models: absolute discounting 

see the dog   1 
see the cat  2 
see the banana  4 
see the man   1 
see the woman 1 
see the car  1 

p( puppy | see the ) = ? 

α(see the) = ? 

How much probability mass did 
we reserve/discount for the 
bigram model? 

€ 

Pabsolute (z | xy) =

C(xyz) −D
C(xy)

if C(xyz) > 0

α(xy)Pabsolute (z | y) otherwise

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

Backoff models: absolute discounting 

see the dog   1 
see the cat  2 
see the banana  4 
see the man   1 
see the woman 1 
see the car  1 

p( puppy | see the ) = ? 

α(see the) = ? 

# of types starting with “see the” * D 

count(“see the”) 

For each of the unique trigrams, we 
subtracted D/count(“see the”) from the 
probability distribution 

€ 

Pabsolute (z | xy) =

C(xyz) −D
C(xy)

if C(xyz) > 0

α(xy)Pabsolute (z | y) otherwise

⎧ 
⎨ 
⎪ 

⎩ ⎪ 
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Backoff models: absolute discounting 

see the dog   1 
see the cat  2 
see the banana  4 
see the man   1 
see the woman 1 
see the car  1 

€ 

Pabsolute (z | xy) =

C(xyz) −D
C(xy)

if C(xyz) > 0

α(xy)Pabsolute (z | y) otherwise

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

p( puppy | see the ) = ? 

α(see the) = ? 

€ 

reserved_mass(see the) =
6*D
10

=
6*0.75

10
= 0.45

distribute this probability mass to all 
bigrams that we backed off to 

# of types starting with “see the” * D 

count(“see the”) 

Calculating α 

  We have some number of bigrams we’re going to 
backoff to, i.e. those X where C(see the X) = 0, that is 
unseen trigrams starting with “see the” 

  When we backoff, for each of these, we’ll be 
including their probability in the model: P(X | the) 

 αis the normalizing constant so that the sum of these 
probabilities equals the reserved probability mass 

€ 

p(X | the)
X :C (see the X) = 0
∑ = reserved _mass(see the)

Calculating α 

  We can calculate α two ways 
  Based on those we haven’t seen: 

 Or, more often, based on those we do see: 

€ 

α(see the) =
reserved _mass(see the)

p(X | the)
X :C (see the X) = 0
∑

€ 

α(see the) =
reserved _mass(see the)

1− p(X | the)
X :C (see the X) >  0

∑

Calculating α in general: trigrams 

  Calculate the reserved mass 

  Calculate the sum of the backed off probability.  For bigram “A B”: 

  Calculate α 

reserved_mass(bigram) =  
# of types starting with bigram * D 

count(bigram) 

€ 

1− p(X | B)
X :C (A B X) >  0
∑

€ 

p(X | B)
X :C (A B X) = 0
∑either is fine in practice, 

the left is easier 

€ 

α(A B) =
reserved _mass(A B)

1− p(X | B)
X :C (A B X) >  0
∑

1 – the sum of the 
bigram probabilities of 
those trigrams that we 
saw starting with bigram 
A B 
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Calculating α in general: bigrams 

  Calculate the reserved mass 

  Calculate the sum of the backed off probability.  For bigram “A B”: 

  Calculate α 

reserved_mass(unigram) =  
# of types starting with unigram * D 

count(unigram) 

€ 

1− p(X)
X :C (A X) >  0
∑

€ 

p(X)
X :C (A X) = 0
∑either is fine in practice, 

the left is easier 

€ 

α(A) =
reserved _mass(A)

1− p(X)
X :C (A X) >  0
∑

1 – the sum of the 
unigram probabilities of 
those bigrams that we 
saw starting with word A 

Calculating backoff models in practice 

  Store the αs in another table 
  If it’s a trigram backed off to a bigram, it’s a table keyed by the 

bigrams 
  If it’s a bigram backed off to a unigram, it’s a table keyed by the 

unigrams 

  Compute the αs during training 
  After calculating all of the probabilities of seen unigrams/bigrams/

trigrams 
  Go back through and calculate the αs (you should have all of the 

information you need) 

  During testing, it should then be easy to apply the backoff model 
with the αs pre-calculated  

Backoff models: absolute discounting 

  Two nice attributes: 
 decreases if we’ve seen more bigrams 

  should be more confident that the unseen trigram is no good 

  increases if the bigram tends to be followed by lots of 
other words 
 will be more likely to see an unseen trigram 

reserved_mass =  
# of types starting with bigram * D 

count(bigram) 

Syntactic structure 

The man in the hat ran to the park. 

DT    NN IN  DT NN  VBD  IN DT   NN 

NP 

NP 

NP 

PP 

NP 

PP 

VP 

S 

(S (NP (NP (DT the) (NN man)) (PP (IN in) (NP (DT the) (NN hat)))) (VP (VBD ran) (PP (TO to (NP (DT the) (NN park)))))) 
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CFG: Example 

  Many possible CFGs for English, here is an 
example (fragment): 
  S → NP VP 
 VP →  V NP 
 NP → DetP N | AdjP NP 
 AdjP →  Adj | Adv AdjP 
 N →  boy | girl 
 V →  sees | likes 
 Adj →  big | small 
 Adv →  very  
 DetP →  a | the 

Grammar questions 

  Can we determine if a sentence is grammatical? 

  Given a sentence, can we determine the syntactic 
structure? 

  Can we determine how likely a sentence is to be 
grammatical? to be an English sentence? 

  Can we generate candidate, grammatical sentences? 

Parsing 

  Parsing is the field of NLP interested in 
automatically determining the syntactic structure 
of a sentence 

  parsing can also be thought of as determining 
what sentences are “valid” English sentences 

Parsing 

  Given a CFG and a sentence, determine the 
possible parse tree(s) 

S -> NP  VP 
NP -> PRP 
NP -> N PP 
NP -> N 
VP -> V NP 
VP -> V NP PP 
PP -> IN N 
PRP -> I 
V -> eat 
N -> sushi 
N -> tuna 
IN -> with 

I eat sushi with tuna 

What parse trees are possible for this sentence? 

How did you figure it out? 
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Parsing 

I eat sushi with tuna 

PRP 

NP 

V N IN N 

PP 

NP 

VP 

S 

I eat sushi with tuna 

PRP 

NP 

V N IN N 

PP NP 

VP 

S 
S -> NP  VP 
NP -> PRP 
NP -> N PP 
VP -> V NP 
VP -> V NP PP 
PP -> IN N 
PRP -> I 
V -> eat 
N -> sushi 
N -> tuna 
IN -> with 

What is the difference between these parses? 

Parsing 

  Given a CFG and a sentence, determine the 
possible parse tree(s) 

S -> NP  VP 
NP -> PRP 
NP -> N PP 
VP -> V NP 
VP -> V NP PP 
PP -> IN N 
PRP -> I 
V -> eat 
N -> sushi 
N -> tuna 
IN -> with 

I eat sushi with tuna 

approaches?  
algorithms? 

Parsing 

  Top-down parsing 

  start at the top (usually S) and apply rules 

  matching left-hand sides and replacing with right-hand sides 

  Bottom-up parsing 
  start at the bottom (i.e. words) and build the parse tree up from there 

  matching right-hand sides and replacing with left-hand sides 

Parsing Example 

S 

  VP 

Verb    NP 

book Det     Nominal 

that Noun 

flight 

book that flight 
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Top Down Parsing 

S 

NP      VP 

Pronoun 

Top Down Parsing 

S 

NP      VP 

Pronoun 

book 

X 

Top Down Parsing 

S 

NP      VP 

ProperNoun 

Top Down Parsing 

S 

NP      VP 

ProperNoun 

book 

X 
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Top Down Parsing 

S 

NP      VP 

Det     Nominal 

Top Down Parsing 

S 

NP      VP 

Det     Nominal 

book 

X 

Top Down Parsing 

S 

Aux      NP      VP 

Top Down Parsing 

S 

Aux      NP      VP 

book 

X 
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Top Down Parsing 

S 

  VP 

Top Down Parsing 

S 

  VP 

Verb 

Top Down Parsing 

S 

  VP 

Verb 

book 

Top Down Parsing 

S 

  VP 

Verb 

book 
X 

that 
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Top Down Parsing 

S 

  VP 

Verb    NP 

Top Down Parsing 

S 

  VP 

Verb    NP 

book 

Top Down Parsing 

S 

  VP 

Verb    NP 

book Pronoun 

Top Down Parsing 

S 

  VP 

Verb    NP 

book Pronoun 

X 
that 
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Top Down Parsing 

S 

  VP 

Verb    NP 

book ProperNoun 

Top Down Parsing 

S 

  VP 

Verb    NP 

book ProperNoun 

X 
that 

Top Down Parsing 

S 

  VP 

Verb    NP 

book Det     Nominal 

Top Down Parsing 

S 

  VP 

Verb    NP 

book Det     Nominal 

that 
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Top Down Parsing 

S 

  VP 

Verb    NP 

book Det     Nominal 

that Noun 

Top Down Parsing 

S 

  VP 

Verb    NP 

book Det     Nominal 

that Noun 

flight 

Bottom Up Parsing 

book             that             flight 

Bottom Up Parsing 

book             that             flight 

Noun 
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Bottom Up Parsing 

book             that             flight 

Noun 

Nominal 

Bottom Up Parsing 

book             that             flight 

Noun 

Nominal       Noun 

Nominal 

Bottom Up Parsing 

book             that             flight 

Noun 

Nominal       Noun 

Nominal 

X 

Bottom Up Parsing 

book             that             flight 

Noun 

Nominal         PP 

Nominal 
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Bottom Up Parsing 

book             that             flight 

Noun  Det 

Nominal         PP 

Nominal 

Bottom Up Parsing 

book             that             flight 

Noun  Det 

NP 

Nominal 

Nominal         PP 

Nominal 

Bottom Up Parsing 

book             that   

Noun  Det 

NP 

Nominal 

flight 

Noun 

Nominal         PP 

Nominal 

Bottom Up Parsing 

book             that   

Noun  Det 

NP 

Nominal 

flight 

Noun 

Nominal         PP 

Nominal 
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Bottom Up Parsing 

book             that   

Noun  Det 

NP 

Nominal 

flight 

Noun 

S 

VP 

Nominal         PP 

Nominal 

Bottom Up Parsing 

book             that   

Noun  Det 

NP 

Nominal 

flight 

Noun 

S 

VP 

X 

Nominal         PP 

Nominal 

Bottom Up Parsing 

book             that   

Noun  Det 

NP 

Nominal 

flight 

Noun 

Nominal         PP 

Nominal 

X 

Bottom Up Parsing 

book             that           

Verb  Det 

NP 

Nominal 

flight 

Noun 
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Bottom Up Parsing 

book             that        

Verb  

VP 

Det 

NP 

Nominal 

flight 

Noun 

Det 

Bottom Up Parsing 

book             that         

Verb  

VP 

S 

NP 

Nominal 

flight 

Noun 

Det 

Bottom Up Parsing 

book             that         

Verb  

VP 

S 

X 
NP 

Nominal 

flight 

Noun 

Bottom Up Parsing 

book             that   

Verb  

VP 

VP 

PP 

Det 

NP 

Nominal 

flight 

Noun 
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Bottom Up Parsing 

book             that   

Verb  

VP 

VP 

PP 

Det 

NP 

Nominal 

flight 

Noun 

X 

Bottom Up Parsing 

book             that   

Verb  

VP 

Det 

NP 

Nominal 

flight 

Noun 

NP 

Bottom Up Parsing 

book             that   

Verb  

VP 

Det 

NP 

Nominal 

flight 

Noun 

Bottom Up Parsing 

book             that   

Verb  

VP 

Det 

NP 

Nominal 

flight 

Noun 

S 
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Parsing 

  Pros/Cons? 
  Top-down: 

  Only examines parses that could be valid parses (i.e. with an S on 
top) 

  Doesn’t take into account the actual words! 

  Bottom-up: 
  Only examines structures that have the actual words as the leaves 
  Examines sub-parses that may not result in a valid parse! 

Why is parsing hard? 

  Actual grammars are large 
  Lots of ambiguity! 

 Most sentences have many parses 
 Some sentences have a lot of parses 
 Even for sentences that are not ambiguous, there is 

often ambiguity for subtrees (i.e. multiple ways to parse 
a phrase) 

Why is parsing hard? 

I saw the man on the hill with the telescope 

What are some interpretations? 

Structural Ambiguity Can Give Exponential Parses 

    Me          See        A man       The telescope          The hill 

“I was on the hill that has a telescope 
when I saw a man.”  

“I saw a man who was on the hill 
that has a telescope on it.”  

“I was on the hill when I used the 
telescope to see a man.”  

“I saw a man who was on a hill and 
who had a telescope.” 

“Using a telescope, I saw a man who 
was on a hill.”  

. . . 

I saw the man on the hill with the telescope 
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Dynamic Programming Parsing 

  To avoid extensive repeated work you must cache 
intermediate results, specifically found constituents 

  Caching (memoizing) is critical to obtaining a 
polynomial time parsing (recognition) algorithm for 
CFGs 

  Dynamic programming algorithms based on both 
top-down and bottom-up search can achieve O(n3) 
recognition time where n is the length of the input 
string. 

Dynamic Programming Parsing Methods 

  CKY (Cocke-Kasami-Younger) algorithm based on 
bottom-up parsing and requires first normalizing the 
grammar. 

  Earley parser is based on top-down parsing and 
does not require normalizing grammar but is more 
complex. 

  These both fall under the general category of chart 
parsers which retain completed constituents in a 
chart 

CKY 

  First grammar must be converted to Chomsky 
normal form (CNF) in which productions must have 
either exactly 2 non-terminal symbols on the RHS or 
1 terminal symbol (lexicon rules). 

  Parse bottom-up storing phrases formed from all 
substrings in a triangular table (chart) 

CNF Grammar 

S -> VP 
VP -> VB NP 
VP -> VB NP PP 
NP -> DT NN  
NP -> NN 
NP -> NP PP 
PP -> IN NP 
DT -> the 
IN -> with 
VB -> film 
VB -> trust 
NN -> man 
NN -> film 
NN -> trust 

S -> VP 
VP -> VB NP 
VP -> VP2 PP 
VP2 -> VB NP 
NP -> DT NN  
NP -> NN 
NP -> NP PP 
PP -> IN NP 
DT -> the 
IN -> with 
VB -> film 
VB -> trust 
NN -> man 
NN -> film 
NN -> trust 


