
3/4/11	

1	

PARSING
David Kauchak
CS159 – Spring 2011

some slides adapted from
Ray Mooney

Admin

  Updated slides/examples on backoff with absolute
discounting (I’ll review them again here today)

  Assignment 2

  Watson vs. Humans (tonight-Wednesday)

Backoff models: absolute discounting

  Subtract some absolute number from each of
the counts (e.g. 0.75)
 will have a large effect on low counts
 will have a small effect on large counts

€

Pabsolute (z | xy) =

C(xyz) −D
C(xy)

if C(xyz) > 0

α(xy)Pabsolute (z | y) otherwise

⎧
⎨
⎪

⎩ ⎪

Backoff models: absolute discounting

€

Pabsolute (z | xy) =

C(xyz) −D
C(xy)

if C(xyz) > 0

α(xy)Pabsolute (z | y) otherwise

⎧
⎨
⎪

⎩ ⎪

What is α(xy)?

3/4/11	

2	

Backoff models: absolute discounting

€

Pabsolute (z | xy) =

C(xyz) −D
C(xy)

if C(xyz) > 0

α(xy)Pabsolute (z | y) otherwise

⎧
⎨
⎪

⎩ ⎪

see the dog 1
see the cat 2
see the banana 4
see the man 1
see the woman 1
see the car 1

the Dow Jones 10
the Dow rose 5
the Dow fell 5

p(cat | see the) = ?

p(puppy | see the) = ?

p(rose | the Dow) = ?

p(jumped | the Dow) = ?

Backoff models: absolute discounting

see the dog 1
see the cat 2
see the banana 4
see the man 1
see the woman 1
see the car 1

p(cat | see the) = ?

€

Pabsolute (z | xy) =

C(xyz) −D
C(xy)

if C(xyz) > 0

α(xy)Pabsolute (z | y) otherwise

⎧
⎨
⎪

⎩ ⎪

€

2 −D
10

=
2 − 0.75
10

= .125

Backoff models: absolute discounting

see the dog 1
see the cat 2
see the banana 4
see the man 1
see the woman 1
see the car 1

p(puppy | see the) = ?

α(see the) = ?

How much probability mass did
we reserve/discount for the
bigram model?

€

Pabsolute (z | xy) =

C(xyz) −D
C(xy)

if C(xyz) > 0

α(xy)Pabsolute (z | y) otherwise

⎧
⎨
⎪

⎩ ⎪

Backoff models: absolute discounting

see the dog 1
see the cat 2
see the banana 4
see the man 1
see the woman 1
see the car 1

p(puppy | see the) = ?

α(see the) = ?

of types starting with “see the” * D

count(“see the”)

For each of the unique trigrams, we
subtracted D/count(“see the”) from the
probability distribution

€

Pabsolute (z | xy) =

C(xyz) −D
C(xy)

if C(xyz) > 0

α(xy)Pabsolute (z | y) otherwise

⎧
⎨
⎪

⎩ ⎪

3/4/11	

3	

Backoff models: absolute discounting

see the dog 1
see the cat 2
see the banana 4
see the man 1
see the woman 1
see the car 1

€

Pabsolute (z | xy) =

C(xyz) −D
C(xy)

if C(xyz) > 0

α(xy)Pabsolute (z | y) otherwise

⎧
⎨
⎪

⎩ ⎪

p(puppy | see the) = ?

α(see the) = ?

€

reserved_mass(see the) =
6*D
10

=
6*0.75

10
= 0.45

distribute this probability mass to all
bigrams that we backed off to

of types starting with “see the” * D

count(“see the”)

Calculating α

  We have some number of bigrams we’re going to
backoff to, i.e. those X where C(see the X) = 0, that is
unseen trigrams starting with “see the”

  When we backoff, for each of these, we’ll be
including their probability in the model: P(X | the)

 αis the normalizing constant so that the sum of these
probabilities equals the reserved probability mass

€

p(X | the)
X :C (see the X) = 0
∑ = reserved _mass(see the)

Calculating α

  We can calculate α two ways
  Based on those we haven’t seen:

 Or, more often, based on those we do see:

€

α(see the) =
reserved _mass(see the)

p(X | the)
X :C (see the X) = 0
∑

€

α(see the) =
reserved _mass(see the)

1− p(X | the)
X :C (see the X) > 0

∑

Calculating α in general: trigrams

  Calculate the reserved mass

  Calculate the sum of the backed off probability. For bigram “A B”:

  Calculate α

reserved_mass(bigram) =
of types starting with bigram * D

count(bigram)

€

1− p(X | B)
X :C (A B X) > 0
∑

€

p(X | B)
X :C (A B X) = 0
∑either is fine in practice,

the left is easier

€

α(A B) =
reserved _mass(A B)

1− p(X | B)
X :C (A B X) > 0
∑

1 – the sum of the
bigram probabilities of
those trigrams that we
saw starting with bigram
A B

3/4/11	

4	

Calculating α in general: bigrams

  Calculate the reserved mass

  Calculate the sum of the backed off probability. For bigram “A B”:

  Calculate α

reserved_mass(unigram) =
of types starting with unigram * D

count(unigram)

€

1− p(X)
X :C (A X) > 0
∑

€

p(X)
X :C (A X) = 0
∑either is fine in practice,

the left is easier

€

α(A) =
reserved _mass(A)

1− p(X)
X :C (A X) > 0
∑

1 – the sum of the
unigram probabilities of
those bigrams that we
saw starting with word A

Calculating backoff models in practice

  Store the αs in another table
  If it’s a trigram backed off to a bigram, it’s a table keyed by the

bigrams
  If it’s a bigram backed off to a unigram, it’s a table keyed by the

unigrams

  Compute the αs during training
  After calculating all of the probabilities of seen unigrams/bigrams/

trigrams
  Go back through and calculate the αs (you should have all of the

information you need)

  During testing, it should then be easy to apply the backoff model
with the αs pre-calculated

Backoff models: absolute discounting

  Two nice attributes:
 decreases if we’ve seen more bigrams

  should be more confident that the unseen trigram is no good

  increases if the bigram tends to be followed by lots of
other words
 will be more likely to see an unseen trigram

reserved_mass =
of types starting with bigram * D

count(bigram)

Syntactic structure

The man in the hat ran to the park.

DT NN IN DT NN VBD IN DT NN

NP

NP

NP

PP

NP

PP

VP

S

(S (NP (NP (DT the) (NN man)) (PP (IN in) (NP (DT the) (NN hat)))) (VP (VBD ran) (PP (TO to (NP (DT the) (NN park))))))

3/4/11	

5	

CFG: Example

  Many possible CFGs for English, here is an
example (fragment):
  S → NP VP
 VP → V NP
 NP → DetP N | AdjP NP
 AdjP → Adj | Adv AdjP
 N → boy | girl
 V → sees | likes
 Adj → big | small
 Adv → very
 DetP → a | the

Grammar questions

  Can we determine if a sentence is grammatical?

  Given a sentence, can we determine the syntactic
structure?

  Can we determine how likely a sentence is to be
grammatical? to be an English sentence?

  Can we generate candidate, grammatical sentences?

Parsing

  Parsing is the field of NLP interested in
automatically determining the syntactic structure
of a sentence

  parsing can also be thought of as determining
what sentences are “valid” English sentences

Parsing

  Given a CFG and a sentence, determine the
possible parse tree(s)

S -> NP VP
NP -> PRP
NP -> N PP
NP -> N
VP -> V NP
VP -> V NP PP
PP -> IN N
PRP -> I
V -> eat
N -> sushi
N -> tuna
IN -> with

I eat sushi with tuna

What parse trees are possible for this sentence?

How did you figure it out?

3/4/11	

6	

Parsing

I eat sushi with tuna

PRP

NP

V N IN N

PP

NP

VP

S

I eat sushi with tuna

PRP

NP

V N IN N

PP NP

VP

S
S -> NP VP
NP -> PRP
NP -> N PP
VP -> V NP
VP -> V NP PP
PP -> IN N
PRP -> I
V -> eat
N -> sushi
N -> tuna
IN -> with

What is the difference between these parses?

Parsing

  Given a CFG and a sentence, determine the
possible parse tree(s)

S -> NP VP
NP -> PRP
NP -> N PP
VP -> V NP
VP -> V NP PP
PP -> IN N
PRP -> I
V -> eat
N -> sushi
N -> tuna
IN -> with

I eat sushi with tuna

approaches?
algorithms?

Parsing

  Top-down parsing

  start at the top (usually S) and apply rules

  matching left-hand sides and replacing with right-hand sides

  Bottom-up parsing
  start at the bottom (i.e. words) and build the parse tree up from there

  matching right-hand sides and replacing with left-hand sides

Parsing Example

S

 VP

Verb NP

book Det Nominal

that Noun

flight

book that flight

3/4/11	

7	

Top Down Parsing

S

NP VP

Pronoun

Top Down Parsing

S

NP VP

Pronoun

book

X

Top Down Parsing

S

NP VP

ProperNoun

Top Down Parsing

S

NP VP

ProperNoun

book

X

3/4/11	

8	

Top Down Parsing

S

NP VP

Det Nominal

Top Down Parsing

S

NP VP

Det Nominal

book

X

Top Down Parsing

S

Aux NP VP

Top Down Parsing

S

Aux NP VP

book

X

3/4/11	

9	

Top Down Parsing

S

 VP

Top Down Parsing

S

 VP

Verb

Top Down Parsing

S

 VP

Verb

book

Top Down Parsing

S

 VP

Verb

book
X

that

3/4/11	

10	

Top Down Parsing

S

 VP

Verb NP

Top Down Parsing

S

 VP

Verb NP

book

Top Down Parsing

S

 VP

Verb NP

book Pronoun

Top Down Parsing

S

 VP

Verb NP

book Pronoun

X
that

3/4/11	

11	

Top Down Parsing

S

 VP

Verb NP

book ProperNoun

Top Down Parsing

S

 VP

Verb NP

book ProperNoun

X
that

Top Down Parsing

S

 VP

Verb NP

book Det Nominal

Top Down Parsing

S

 VP

Verb NP

book Det Nominal

that

3/4/11	

12	

Top Down Parsing

S

 VP

Verb NP

book Det Nominal

that Noun

Top Down Parsing

S

 VP

Verb NP

book Det Nominal

that Noun

flight

Bottom Up Parsing

book that flight

Bottom Up Parsing

book that flight

Noun

3/4/11	

13	

Bottom Up Parsing

book that flight

Noun

Nominal

Bottom Up Parsing

book that flight

Noun

Nominal Noun

Nominal

Bottom Up Parsing

book that flight

Noun

Nominal Noun

Nominal

X

Bottom Up Parsing

book that flight

Noun

Nominal PP

Nominal

3/4/11	

14	

Bottom Up Parsing

book that flight

Noun Det

Nominal PP

Nominal

Bottom Up Parsing

book that flight

Noun Det

NP

Nominal

Nominal PP

Nominal

Bottom Up Parsing

book that

Noun Det

NP

Nominal

flight

Noun

Nominal PP

Nominal

Bottom Up Parsing

book that

Noun Det

NP

Nominal

flight

Noun

Nominal PP

Nominal

3/4/11	

15	

Bottom Up Parsing

book that

Noun Det

NP

Nominal

flight

Noun

S

VP

Nominal PP

Nominal

Bottom Up Parsing

book that

Noun Det

NP

Nominal

flight

Noun

S

VP

X

Nominal PP

Nominal

Bottom Up Parsing

book that

Noun Det

NP

Nominal

flight

Noun

Nominal PP

Nominal

X

Bottom Up Parsing

book that

Verb Det

NP

Nominal

flight

Noun

3/4/11	

16	

Bottom Up Parsing

book that

Verb

VP

Det

NP

Nominal

flight

Noun

Det

Bottom Up Parsing

book that

Verb

VP

S

NP

Nominal

flight

Noun

Det

Bottom Up Parsing

book that

Verb

VP

S

X
NP

Nominal

flight

Noun

Bottom Up Parsing

book that

Verb

VP

VP

PP

Det

NP

Nominal

flight

Noun

3/4/11	

17	

Bottom Up Parsing

book that

Verb

VP

VP

PP

Det

NP

Nominal

flight

Noun

X

Bottom Up Parsing

book that

Verb

VP

Det

NP

Nominal

flight

Noun

NP

Bottom Up Parsing

book that

Verb

VP

Det

NP

Nominal

flight

Noun

Bottom Up Parsing

book that

Verb

VP

Det

NP

Nominal

flight

Noun

S

3/4/11	

18	

Parsing

  Pros/Cons?
  Top-down:

  Only examines parses that could be valid parses (i.e. with an S on
top)

  Doesn’t take into account the actual words!

  Bottom-up:
  Only examines structures that have the actual words as the leaves
  Examines sub-parses that may not result in a valid parse!

Why is parsing hard?

  Actual grammars are large
  Lots of ambiguity!

 Most sentences have many parses
 Some sentences have a lot of parses
 Even for sentences that are not ambiguous, there is

often ambiguity for subtrees (i.e. multiple ways to parse
a phrase)

Why is parsing hard?

I saw the man on the hill with the telescope

What are some interpretations?

Structural Ambiguity Can Give Exponential Parses

 Me See A man The telescope The hill

“I was on the hill that has a telescope
when I saw a man.”

“I saw a man who was on the hill
that has a telescope on it.”

“I was on the hill when I used the
telescope to see a man.”

“I saw a man who was on a hill and
who had a telescope.”

“Using a telescope, I saw a man who
was on a hill.”

. . .

I saw the man on the hill with the telescope

3/4/11	

19	

Dynamic Programming Parsing

  To avoid extensive repeated work you must cache
intermediate results, specifically found constituents

  Caching (memoizing) is critical to obtaining a
polynomial time parsing (recognition) algorithm for
CFGs

  Dynamic programming algorithms based on both
top-down and bottom-up search can achieve O(n3)
recognition time where n is the length of the input
string.

Dynamic Programming Parsing Methods

  CKY (Cocke-Kasami-Younger) algorithm based on
bottom-up parsing and requires first normalizing the
grammar.

  Earley parser is based on top-down parsing and
does not require normalizing grammar but is more
complex.

  These both fall under the general category of chart
parsers which retain completed constituents in a
chart

CKY

  First grammar must be converted to Chomsky
normal form (CNF) in which productions must have
either exactly 2 non-terminal symbols on the RHS or
1 terminal symbol (lexicon rules).

  Parse bottom-up storing phrases formed from all
substrings in a triangular table (chart)

CNF Grammar

S -> VP
VP -> VB NP
VP -> VB NP PP
NP -> DT NN
NP -> NN
NP -> NP PP
PP -> IN NP
DT -> the
IN -> with
VB -> film
VB -> trust
NN -> man
NN -> film
NN -> trust

S -> VP
VP -> VB NP
VP -> VP2 PP
VP2 -> VB NP
NP -> DT NN
NP -> NN
NP -> NP PP
PP -> IN NP
DT -> the
IN -> with
VB -> film
VB -> trust
NN -> man
NN -> film
NN -> trust

