

Admin

- First quiz on Monday
- first 30 minutes of class (show up on time!)
 open book
- □ Assignment 2
- Assignment 3
 - you can assume one sentence per line (this isn't exactly true, but it's sufficient for this assignment)
 - $\hfill\square$ to get the words, just split on whitespace
 - \blacksquare e-mail me if there are ambiguities/problems
- Keep up with the reading

Morphology

- What is morphology?
 study of the internal structure of words
 morph-ology word-s jump-ing
- Why might this be useful for NLP?
 - $\hfill\square$ generalization (runs, running, runner are related)
 - additional information (it's plural, past tense, etc)
 - allows us to handle words we've never seen before
 smoothing?

New words

- AP newswire stories from Feb 1988 Dec 30, 1988
 300K unique words
- □ New words seen on Dec 31
 - compounds: prenatal-care, publicly-funded, channelswitching, ...
 - New words:
 - dumbbells, groveled, fuzzier, oxidized, ex-presidency, puppetry, boulderlike, over-emphasized, antiprejudice

Morphology basics

- Words are built up from morphemes
 stems (base/main part of the word)
 - affixes
 - prefixes
 - precedes the stem
 - suffixes
 - follows the stem
 - infixes
 - inserted inside the stem
 - circumfixes
 surrounds the stem
 - surrounds the stem
 - Examples?

Morpheme examples

- prefix
 - circum- (circumnavigate)
 - 🗆 dis- (dislike)
 - mis- (misunderstood)
- 🗖 com-, de-, dis-, in-, re-, post-, trans-, ...
- suffix
 - -able (movable)
 - -ance (resistance)
 - -ly (quickly)
 - -tion, -ness, -ate, -ful, ...

Morpheme examples

🗆 infix

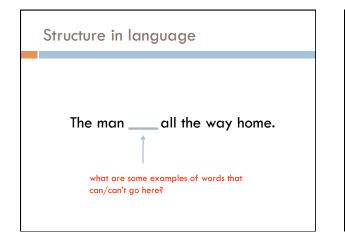
- -fucking- (cinder-fucking-rella)
- more common in other languages
- circumfix
 - doesn't happen in English

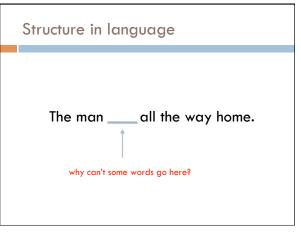
Agglutinative: Finnish

talo 'the-house' talo-ni 'my house' talo-ssa 'in the-house' talo-issa -ni 'in my houses' talo-i-ssa-ni 'in my houses' kaup-pa 'the-shop' kaup-pa-ni 'my shop' kaup-a-ssa 'in the-shop' kaup-a-ssa-ni 'in my shop' kaup-o-i-ssa 'in the-shops' kaup-o-i-ssa-ni 'in my shops'

Stemming (bal	oy lemm	natization)			
Reduce a word to the main morpheme					
automate automates automatic automation		automat			
run runs running		run			

Stemming example		
This is a poorly constructed example using the Porter stemmer.		
This is a poorli construct example us the Porter stemmer.		
http://maya.cs.depaul.edu/~classes/ds575/porter.html (or you can download versions online)		


- Most common algorithm for stemming English
 Results suggest it's at least as good as other stemming options
- Multiple sequential phases of reductions using rules, e.g.


□ sses \rightarrow ss □ ies \rightarrow i □ ational \rightarrow ate

- □ tional \rightarrow tion
- http://tartarus.org/~martin/PorterStemmer/

What is Syntax?

- □ Study of structure of language
- Examine the rules of how words interact and go together
- Rules governing grammaticality
- $\hfill \ensuremath{\square}$ I will give you one perspective
 - no single correct theory of syntax
 - \hfill an active field of research in linguistics
 - we will often use it as a tool/stepping stone for other applications

Structure in language

The man flew all the way home.

- Language is bound by a set of rules
- It's not clear exactly the form of these rules, however, people can generally recognize them
- This is syntax!

Syntax != Semantics

Colorless green ideas sleep furiously.

 Syntax is only concerned with how words interact from a grammatical standpoint, not semantically

Parts of speech

What are parts of speech (think 3rd grade)?

Parts of speech				
Parts of speech are constructed by grouping words that function similarly: - with respect to the words that can occur nearby - and by their morphological properties				
The mar	n a	II the v	way home.	
ran forgave ate drove drank hid learned burt	integrated programmed shot shouted sat slept understood voted	washed warned walked spoke succeeded survived read recorded		

Parts of speech

What are the English parts of speech?

8 parts of speech?

- Noun (person, place or thing)
- Verb (actions and processes)
- Adjective (modify nouns)
- Adverb (modify verbs)
- Preposition (on, in, by, to, with)
- Determiners (a, an, the, what, which, that)
- Conjunctions (and, but, or)
- Particle (off, up)

English parts of speech

- Brown corpus: 87 POS tags
- Penn Treebank: ~45 POS tags
- Derived from the Brown tagset
- Most common in NLP
- Many of the examples we'll show us this one
- British National Corpus (C5 tagset): 61 tags
- C6 tagset: 148
- C7 tagset: 146
- C8 tagset: 171

Brown tagset

http://www.comp.leeds.ac.uk/ccalas/tagsets/brown.html

Noun (person, place or thing) Singular (NN): dog, fork Piroper (NNP, NNPS): John, Springfields Personal pronoun (PRP): I, you, he, she, it Wh-pronoun (WP): who, what Verb (actions and processes) Base, infinitive (VB): eat Gerund (VBG): eating Past participle (VBN): eaten Non 3rd person singular present tense (VBP): eat 3rd person singular present tense: (VBZ): eats Modal (MD): should, can

To (TO): to (to eat)

English Parts of Speech (cont.)

Adjective (modify nouns) Basic (JJ): red, tall

- Comparative (JJR): redder, taller
- Superlative (JJS): reddest, tallest
- Adverb (modify verbs)
 Basic (PB): quickly
 - Basic (RB): quickly
 Comparative (RBR): quicker
 - Superlative (RBS): quickest
- Preposition (IN): on, in, by, to, with
- Determiner:

Basic (DT) a, an, the WH-determiner (WDT): which, that

- Coordinating Conjunction (CC): and, but, or,
- Particle (RP): off (took off), up (put up)

Closed vs. Open Class

- Closed class categories are composed of a small, fixed set of grammatical function words for a given language.
 - Pronouns, Prepositions, Modals, Determiners, Particles, Conjunctions
- Open class categories have large number of words and new ones are easily invented.
 - Nouns (Googler, futon, iPad), Verbs (Google, futoning), Adjectives (geeky), Abverb (chompingly)

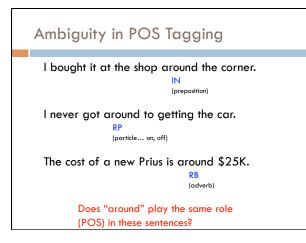
Part of speech tagging

 Annotate each word in a sentence with a part-ofspeech marker

Lowest level of syntactic analysis

John saw the saw and decided to take it to the table. NNP VBD DT NN CC $\,$ VBD TO VB PRP IN DT NN $\,$

Ambiguity in POS Tagging

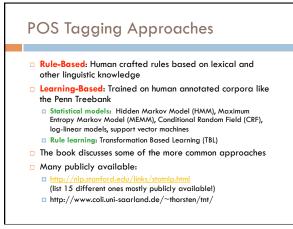

I like candy.

VBP (verb, non-3rd person, singular, present)

Time flies like an arrow.

IN (preposition)

Does "like" play the same role (POS) in these sentences?



Ambiguity in POS tagging

- Like most language components, the challenge with POS tagging is ambiguity
- Brown corpus analysis
 - 11.5% of word types are ambiguous (this sounds promising)
 - □ 40% of word appearance are ambiguous
 - Unfortunately, the ambiguous words tend to be the more frequently used words

How hard is it?

- If I told you I had a POS tagger that achieved 90% would you be impressed?
 - Shouldn't be... just picking the most frequent POS for a word gets you this
- What about a POS tagger that achieves 93.7%?
 Still probably shouldn't be... only need to add a basic module for handling unknown words
- What about a POS tagger that achieves 100%?
 Should be suspicious... humans only achieve ~97%
 Probably overfitting

Constituency

Parts of speech can be thought of as the lowest level of syntactic information

Groups words together into categories

likes to eat candy.

What can/can't go here?

Constituency

likes to eat candy. determiner nouns The man Professor Kauchak The boy The cat

pronouns

nouns

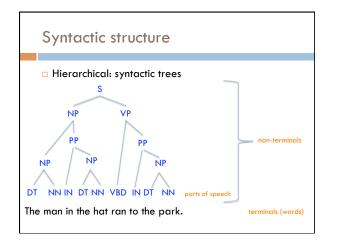
Dave

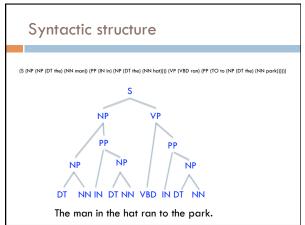
Dr. Suess

He

She

determiner nouns +


The man that I saw The boy with the blue pants The cat in the hat


Constituency

- Words in languages tend to form into functional groups (parts of speech)
- Groups of words (aka phrases) can also be grouped into functional groups
 - often some relation to parts of speech
 - though, more complex interactions
- □ These phrase groups are called constituents

Common constituents	Common constituents
The man in the hat ran to the park.	The man in the hat ran to the park. noun prepositional noun phrase phrase prepositional noun phrase prepositional phrase verb phrase

(S (NP (NP (DT the) (NN man)) (PP (IN in) (NP (DT the) (NN har)))) (VP (VBD ran) (PP (TO to (NP (DT the) (NN park)))))) (S (NP (NP (DT the) (NN man))) (PP (IN in) (NP (DT the) (NN har)))) (VP (VBD ran) (PP (TO to) (NP (DT the) (NN park))))))

Syntactic structure


- □ A number of related problems:
 - Given a sentence, can we determine the syntactic structure?
 - Can we determine if a sentence is grammatical?
 - Can we determine how likely a sentence is to be grammatical? to be an English sentence?
 - Can we generate candidate, grammatical sentences?

Grammars What is a grammar (3rd grade again...)?

Grammars

- Grammar is a set of structural rules that govern the composition of sentences, phrases and words
- Lots of different kinds of grammars:
- 🗖 regular
- context-free
- context-sensitive
- recursively enumerable
- transformation grammars

Formally...

- G = (NT,T,P,S)
- □ V: finite set of nonterminal symbols
- □ T: finite set of terminal symbols, V and T are disjoint
- □ P: finite set of productions of the form
- $\mathsf{A} \rightarrow \alpha \text{, } \mathsf{A} \in \mathsf{V} \text{ and } \alpha \in (\mathsf{T} \cup \mathsf{NT})^*$
- \square S \in NT: start symbol

CFG: Example

- Many possible CFGs for English, here is an example (fragment):
 - \square S \rightarrow NP VP
 - \square VP \rightarrow V NP
 - $\blacksquare \mathsf{NP} \rightarrow \mathsf{DetP} \mathsf{N} \mid \mathsf{AdjP} \mathsf{NP}$
 - \Box AdjP \rightarrow Adj | Adv AdjP $\square N \rightarrow boy | girl$
 - $\Box V \rightarrow sees | likes$
 - a Adj → big | small Adj → very DetP → α | the

Grammar questions

- Can we determine if a sentence is grammatical?
- Given a sentence, can we determine the syntactic structure?
- Can we determine how likely a sentence is to be grammatical? to be an English sentence?
- Can we generate candidate, grammatical sentences?

Which of these can we answer with a CFG? How?

Grammar questions

- Can we determine if a sentence is grammatical?
 Is it accepted/recognized by the grammar
 Applying rules right to left, do we get the start symbol?
- Given a sentence, can we determine the syntactic structure?
 Keep track of the rules applied...
- Can we determine how likely a sentence is to be grammatical? to be an English sentence?
 Not yet... no notion of "likelihood" (probability)
- Can we generate candidate, grammatical sentences?
 Start from the start symbol, randomly pick rules that apply (i.e. left hand side matches)

Derivations in a CFG

S → NP VP

 $\begin{array}{l} \mathsf{VP} \rightarrow \mathsf{V} \mathsf{NP} \\ \mathsf{NP} \rightarrow \mathsf{DetP} \mathsf{N} \mid \mathsf{AdjP} \mathsf{NP} \\ \mathsf{AdjP} \rightarrow \mathsf{Adj} \mid \mathsf{Adv} \mathsf{AdjP} \\ \mathsf{N} \rightarrow \mathsf{boy} \mid \mathsf{girl} \\ \mathsf{V} \rightarrow \mathsf{sees} \mid \mathsf{likes} \\ \mathsf{Adj} \rightarrow \mathsf{big} \mid \mathsf{small} \\ \mathsf{Adv} \rightarrow \mathsf{very} \\ \mathsf{DetP} \rightarrow \mathsf{a} \mid \mathsf{the} \end{array}$

S

Derivations in a CFG

$$\begin{split} S &\rightarrow NP \ VP \\ VP &\rightarrow V \ NP \\ \textbf{NP} &\rightarrow \textbf{DetP} \ \textbf{N} \ | \ AdjP \ NP \\ AdjP &\rightarrow Adj \ | \ Adv \ AdjP \\ N &\rightarrow boy \ | \ girl \\ V &\rightarrow sees \ | \ likes \\ Adj &\rightarrow big \ | \ small \\ Adv &\rightarrow very \\ DetP &\rightarrow a \ | \ the \end{split}$$

NP VP

NF V F

Derivations in a CFG

$S \rightarrow NP VP$ $VP \rightarrow V NP$ $NP \rightarrow DetP N \mid AdjP NP$ $AdjP \rightarrow Adj \mid Adv AdjP$ $N \rightarrow boy | girl$ $V \rightarrow sees | likes$ $\begin{array}{l} \operatorname{Adj} \rightarrow \ \operatorname{big} \ | \ \operatorname{small} \\ \operatorname{Adv} \rightarrow \ \operatorname{very} \\ \operatorname{DetP} \rightarrow \ \operatorname{a} \ | \ \operatorname{the} \end{array}$

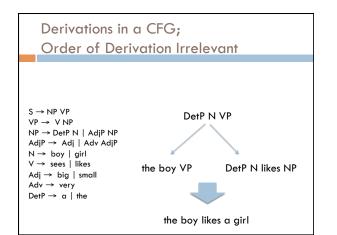
DetP N VP

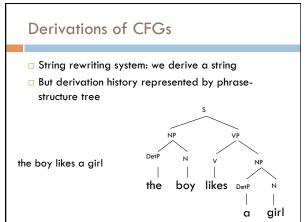
Derivations in a CFG

$S \rightarrow NP VP$ VP → V NP $\begin{array}{l} \mathsf{VP} \rightarrow \mathsf{V} \ \mathsf{NP} \\ \mathsf{NP} \rightarrow \mathsf{DetP} \ \mathsf{N} \ | \ \mathsf{AdjP} \ \mathsf{NP} \\ \mathsf{AdjP} \rightarrow \mathsf{Adj} \ | \ \mathsf{Adv} \ \mathsf{AdjP} \\ \mathsf{N} \rightarrow \mathsf{boy} \ | \ \mathsf{girl} \\ \mathsf{V} \rightarrow \mathsf{sees} \ | \ \mathsf{likes} \\ \end{array}$ $Adj \rightarrow big \mid small$ $Adv \rightarrow very$ $DetP \rightarrow a \mid the$

the boy VP

Derivations in a CFG


 $\mathsf{S} \to \mathsf{NP} \; \mathsf{VP}$ $VP \rightarrow V NP$ $NP \rightarrow DetP N \mid AdjP NP$ $\begin{array}{l} \mathsf{NP} \rightarrow \mathsf{DerP} \ \mathsf{N} \ | \ \mathsf{Adp} \ \mathsf{NP} \\ \mathsf{Adj} \ \rightarrow \ \mathsf{Adj} \ | \ \mathsf{Adv} \ \mathsf{AdjP} \ \mathsf{NP} \\ \mathsf{N} \rightarrow \ \mathsf{boy} \ | \ \mathsf{girl} \\ \mathsf{V} \rightarrow \ \mathsf{sees} \ | \ \mathsf{likes} \\ \mathsf{Adj} \rightarrow \ \mathsf{big} \ | \ \mathsf{small} \\ \mathsf{Adv} \rightarrow \ \mathsf{very} \\ \mathbf{DetP} \rightarrow \ \mathbf{a} \ | \ \mathsf{the} \end{array}$


the boy likes NP

Derivations in a CFG

 $\mathsf{S} \to \mathsf{NP} \; \mathsf{VP}$ $VP \rightarrow V NP$ NP \rightarrow DetP N | AdjP NP $\begin{array}{l} \mathsf{NP} \rightarrow \mathsf{DetP} \; \mathsf{N} \; \mid \mathsf{Ad}|\mathsf{P} \; \mathsf{Nr} \\ \mathsf{Ad}|\mathsf{P} \rightarrow \mathsf{Ad}| \; \mid \mathsf{Adv} \; \mathsf{Ad}|\mathsf{P} \\ \mathsf{N} \rightarrow \; \mathsf{boy} \; \mid \; \mathsf{girl} \\ \mathsf{V} \rightarrow \; \mathsf{sees} \; \mid \mathsf{likes} \\ \mathsf{Ad}| \rightarrow \; \mathsf{big} \; \mid \mathsf{small} \\ \mathsf{Adv} \rightarrow \; \mathsf{very} \\ \mathsf{DetP} \rightarrow \; \mathsf{a} \; \mid \mathsf{the} \end{array}$

the boy likes a girl

Grammar Equivalence

- Weak equivalence: grammars generate same set of strings
 - \blacksquare Grammar 1: NP \rightarrow DetP N and DetP $\rightarrow~a~|~the$
 - \blacksquare Grammar 2: NP \rightarrow a N | NP \rightarrow the N
- Strong equivalence: grammars have same set of derivation trees
 - With CFGs, possible only with useless rules
 - \blacksquare Grammar 2: NP \rightarrow a N \mid NP \rightarrow the N
 - \blacksquare Grammar 3: NP \rightarrow a N \mid NP \rightarrow the N, DetP \rightarrow many

Normal Forms

- There are weakly equivalent normal forms (Chomsky Normal Form, Greibach Normal Form)
- A CFG is in Chomsky Normal Form (CNF) if all productions are of one of two forms:
 A → BC with A, B, C nonterminals
 - \blacksquare A \rightarrow a, with A a nonterminal and a a terminal
- Every CFG has a weakly equivalent CFG in CNF

Parsing

- Parsing is the field of NLP interested in automatically determining the syntactic structure of a sentence
- parsing can be thought of as determining what sentences are "valid" English sentences
- $\hfill\square$ As a by product, we often can get the structure

Parsing

Given a CFG and a sentence, determine the possible parse tree(s)

 I eat sushi with tuna

 NP -> PRP

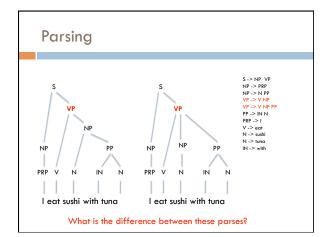
 NP -> N PP

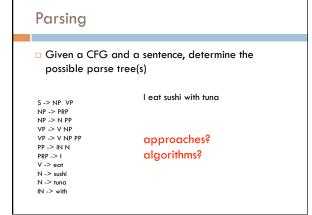
 VP -> V NP

 VP -> V NP PP

 PP -> IN N

 PRP -> I


 V -> eat


 N -> sushi

 N -> sushi

 N -> sushi

 N -> with

Parsing

Top-down parsing

- $\hfill\square$ ends up doing a lot of repeated work
- $\hfill\square$ doesn't take into account the words in the sentence until the end!
- Bottom-up parsing
 - constrain based on the words
 - avoids repeated work (dynamic programming)
 - CKY parser

Article discussion

- <u>http://www.information-management.com/</u> <u>news/-10019543-1.html</u>
- How hard is this problem?
- What are the challenges?
- Are we leveraging any particular domain knowledge?
 What other types of problem areas might this be useful for?
- □ Is this a good problem to be working on?
- What would be other "grand" NLP-like problems?