
2/10/11

1

LANGUAGE MODELING:
SMOOTHING
David Kauchak
CS159 – Spring 2011

some slides adapted from
Jason Eisner

Admin

  Assignment 2 out
 bigram language modeling
 Java
 Can work with partners

 Anyone looking for a partner?

 Due Wednesday 2/16 (but start working on it now!)
 HashMap

Admin

  Our first quiz next Monday (2/14)
  In-class (~30 min.)
 Topics

  corpus analysis
  regular expressions
 probability
  language modeling

 Open book
 we’ll try it out for this one
 better to assume closed book (30 minutes goes by fast!)

 5% of your grade

2/10/11

2

Today

smoothing
techniques

Today

  Take home ideas:
 Key idea of smoothing is to redistribute the probability

to handle less see (or never seen) events
 Still must always maintain a true probability distribution

 Lots of ways of smoothing data
 Should take into account features in your data!
 For n-grams, backoff models and, in particular, Kneser-

Ney smoothing work well

Smoothing

P(I think today is a good day to be me) =

P(I | <start> <start>) x

P(think | <start> I) x

P(today| I think) x

P(is| think today) x

P(a| today is) x

P(good| is a) x

…

If any of these has never been
seen before, prob = 0!

What if our test set contains the following sentence, but one of the
trigrams never occurred in our training data?

Smoothing

P(I think today is a good day to be me) =

P(I | <start> <start>) x

P(think | <start> I) x

P(today| I think) x

P(is| think today) x

P(a| today is) x

P(good| is a) x

…

These probability estimates
may be inaccurate.
Smoothing can help reduce
some of the noise.

2/10/11

3

Add-lambda smoothing

  A large dictionary makes novel events too probable.

  add λ = 0.01 to all counts

see the abacus 1 1/3 1.01 1.01/203
see the abbot 0 0/3 0.01 0.01/203

see the abduct 0 0/3 0.01 0.01/203
see the above 2 2/3 2.01 2.01/203
see the Abram 0 0/3 0.01 0.01/203

… 0.01 0.01/203
see the zygote 0 0/3 0.01 0.01/203

Total 3 3/3 203

Vocabulary

  n-gram language modeling assumes we have a fixed
vocabulary
 why?

  Whether implicit or explicit, an n-gram language model
is defined over a finite, fixed vocabulary

  What happens when we encounter a word not in our
vocabulary (Out Of Vocabulary)?
  If we don’t do anything, prob = 0
  Smoothing doesn’t really help us with this!

Vocabulary

  To make this explicit, smoothing helps us with…

see the abacus 1 1.01
see the abbot 0 0.01

see the abduct 0 0.01
see the above 2 2.01
see the Abram 0 0.01

… 0.01
see the zygote 0 0.01

all entries in our vocabulary

Vocabulary

  and…
Vocabulary

a
able
about
account
acid
across
…
young
zebra

10
1
2
0
0
3
…
1
0

Counts

10.01
1.01
2.01
0.01
0.01
3.01
…
1.01
0.01

Smoothed counts

How can we have words in our
vocabulary we’ve never seen before?

2/10/11

4

Vocabulary

  Choosing a vocabulary: ideas?
 Grab a list of English words from somewhere
 Use all of the words in your training data
 Use some of the words in your training data

  for example, all those the occur more than k times

  Benefits/drawbacks?
  Ideally your vocabulary should represents words your likely

to see
  Too many words, end up washing out your probability

estimates (and getting poor estimates)
  Too few, lots of out of vocabulary

Vocabulary

  No matter your chosen vocabulary, you’re still going
to have out of vocabulary (OOV)

  How can we deal with this?
  Ignore words we’ve never seen before

 Somewhat unsatisfying, though can work depending on the
application

 Probability is then dependent on how many in vocabulary
words are seen in a sentence/text

 Use a special symbol for OOV words and estimate the
probability of out of vocabulary

Out of vocabulary

  Add an extra word in your vocabulary to denote
OOV (<OOV>, <UNK>)

  Replace all words in your training corpus not in the
vocabulary with <UNK>
 You’ll get bigrams, trigrams, etc with <UNK>

 p(<UNK> | “I am”)
 p(fast | “I <UNK>”)

  During testing, similarly replace all OOV with
<UNK>

Choosing a vocabulary

  A common approach (and the one we’ll use for the
assignment):
 Replace the first occurrence of each word by <UNK> in

a data set
 Estimate probabilities normally

  Vocabulary then is all words that occurred two or
more times

  This also discounts all word counts by 1 and gives
that probability mass to <UNK>

2/10/11

5

Storing the table

see the abacus 1 1/3 1.01 1.01/203
see the abbot 0 0/3 0.01 0.01/203

see the abduct 0 0/3 0.01 0.01/203
see the above 2 2/3 2.01 2.01/203
see the Abram 0 0/3 0.01 0.01/203

… 0.01 0.01/203
see the zygote 0 0/3 0.01 0.01/203

Total 3 3/3 203

How are we storing this table?
Should we store all entries?

Storing the table

  Hashtable
  fast retrieval
  fairly good memory usage

  Only store those entries of things we’ve seen
  for example, we don’t store V3 trigrams

  For trigrams we can:
 Store one hashtable with bigrams as keys
 Store a hashtable of hashtables (I’m recommending this)

Storing the table:
add-lambda smoothing

  For those we’ve seen before:

  Unseen n-grams: p(z|ab) = ?
€

P(c | ab) =
C(abc) + λ
C(ab) + λV

€

P(z | ab) =
λ

C(ab) + λV

Store the lower order counts
(or probabilities)

How common are novel events?

0 10000 20000 30000 40000 50000 60000

1

2

3

4

5

6

7

8

9

10

nu
m

be
r

of
 w

or
ds

 o
cc

ur
rin

g
X

tim
es

 in
 th

e
co

rp
us

How likely are novel/unseen events?

2/10/11

6

How common are novel events?

0 10000 20000 30000 40000 50000 60000

1

2

3

4

5

6

7

8

9

10

nu
m

be
r

of
 w

or
ds

 o
cc

ur
rin

g
X

tim
es

 in
 th

e
co

rp
us

If we follow the pattern, something like this…

Good-Turing estimation

0 10000 20000 30000 40000 50000 60000

1

2

3

4

5

6

7

8

9

10 9
8
7
6
5
4
3
2
1
0

Good-Turing estimation

  Nc = number of words/bigrams occurring c times
  Replace MLE counts for things with count c:

  Estimate the probability of novel events as: €

c* = (c +1) Nc+1

Nc

scale down the next
frequency up

€

p(unseen) =
N1

Total_words

Good-Turing (classic example)

  Imagine you are fishing
  8 species: carp, perch, whitefish, trout, salmon, eel, catfish, bass

  You have caught
  10 carp, 3 perch, 2 whitefish, 1 trout, 1 salmon, 1 eel = 18 fish

  How likely is it that the next fish caught is from a new species
(one not seen in our previous catch)?

€

p(unseen) =
N1

Total_words

€

=
3
18

2/10/11

7

Good-Turing (classic example)

  Imagine you are fishing
  8 species: carp, perch, whitefish, trout, salmon, eel, catfish, bass

  You have caught
  10 carp, 3 perch, 2 whitefish, 1 trout, 1 salmon, 1 eel = 18 fish

  How likely is it that next species is trout?

€

c* = (c +1) Nc+1

Nc

€

= 2* 1
3

= 0.67

€

0.67
18

Good-Turing (classic example)

  Imagine you are fishing
  8 species: carp, perch, whitefish, trout, salmon, eel, catfish, bass

  You have caught
  10 carp, 3 perch, 2 whitefish, 1 trout, 1 salmon, 1 eel = 18 fish

  How likely is it that next species is perch?

€

c* = (c +1) Nc+1

Nc

N4 is 0!

Nice idea, but kind of a pain to
implement in practice

Problems with frequency based smoothing

  The following bigrams have never been seen:

p(X| ate) p(X | San)

Which would add-lambda pick as most likely?

Which would you pick?

Witten-Bell Discounting

  Some words are more likely to be followed by new words

San

Diego
Francisco
Luis
Jose
Marcos

ate

food
apples
bananas
hamburgers
a lot
for two
grapes
…

2/10/11

8

Witten-Bell Discounting

  Probability mass is shifted around, depending on
the context of words

  If P(wi | wi-1,…,wi-m) = 0, then the smoothed
probability PWB(wi | wi-1,…,wi-m) is higher if the
sequence wi-1,…,wi-m occurs with many different
words wi

Witten-Bell Smoothing

  For bigrams
 T(wi-1) is the number of different words (types) that

occur to the right of wi-1

 N(wi-1) is the number of times wi-1 occurred

 Z(wi-1) is the number of bigrams in the current data set
starting with wi-1 that do not occur in the training data

Witten-Bell Smoothing

  if c(wi-1,wi) > 0

€

PWB (wi |wi−1) =
c(wi−1wi)

N(wi−1) + T(wi−1)

times we saw the bigram

times wi-1 occurred + # of types to the right of wi-1

Witten-Bell Smoothing

  If c(wi-1,wi) = 0

€

PWB (wi |wi−1) =
T(wi−1)

Z(wi−1)(N + T(wi−1))

2/10/11

9

Problems with frequency based smoothing

  The following trigrams have never been seen:

p(cumquat | see the)

p(zygote | see the) p(car | see the)

Which would add-lambda pick as most likely?
Good-Turing? Witten-Bell?

Which would you pick?

Better smoothing approaches

  Utilize information in lower-order models

  Interpolation
  p*(z| x,y) = λp(z | x, y) + μp(z | y) + (1-λ-μ)p(z)

  Combine the probabilities in some linear combination

  Backoff

  Often k = 0 (or 1)

  Combine the probabilities by “backing off” to lower models only
when we don’t have enough information €

P(z | xy) =
C*(xyz)
C(xy)

if C(xyz) > k

α(xy)P(z | y) otherwise

Smoothing: Simple Interpolation

  Trigram is very context specific, very noisy
  Unigram is context-independent, smooth
  Interpolate Trigram, Bigram, Unigram for best

combination
  How should we determine λ andμ?

€

P(z | xy) ≈ λ C(xyz)
C(xy)

+ µ
C(yz)
C(y)

+ (1− λ −µ)C(z)
C(•)

Smoothing: Finding parameter values

  Just like we talked about before, split training data
into training and development
  can use cross-validation, leave-one-out, etc.

  Try lots of different values for λ, µ on heldout data,
pick best

  Two approaches for finding these efficiently
 EM (expectation maximization)
 “Powell search” – see Numerical Recipes in C

2/10/11

10

Smoothing: Jelinek-Mercer

  Simple interpolation:

  Should all bigrams be smoothed equally? Which of
these is it more likely to start an unseen trigram?

€

Psmooth (z | xy) = λ
C(xyz)
C(xy)

+ (1− λ)Psmooth (z | y)

Smoothing: Jelinek-Mercer

  Simple interpolation:

  Multiple parameters: smooth a little after “The Dow”,
more after “Adobe acquired”

€

Psmooth (z | xy) = λ
C(xyz)
C(xy)

+ (1− λ)Psmooth (z | y)

€

Psmooth (z | xy) =

λ(C(xy))C(xyz)
C(xy)

+ (1− λ(C(xy))Psmooth (z | y)

Smoothing: Jelinek-Mercer continued

  Bin counts by frequency and assign λs for each bin

  Find λs by cross-validation on held-out data
€

Psmooth (z | xy) =

λ(C(xy))C(xyz)
C(xy)

+ (1− λ(C(xy))Psmooth (z | y)

Backoff models: absolute discounting

  Subtract some absolute number from each of
the counts (e.g. 0.75)
 will have a large effect on low counts
 will have a small effect on large counts

€

Pabsolute (z | xy) =

C(xyz) −D
C(xy)

if C(xyz) > 0

α(xy)Pabsolute (z | y) otherwise

2/10/11

11

Backoff models: absolute discounting

€

Pabsolute (z | xy) =

C(xyz) −D
C(xy)

if C(xyz) > 0

α(xy)Pabsolute (z | y) otherwise

What is α(xy)?

Backoff models: absolute discounting

€

Pabsolute (z | xy) =

C(xyz) −D
C(xy)

if C(xyz) > 0

α(xy)Pabsolute (z | y) otherwise

see the dog 1
see the cat 2
see the banana 4
see the man 1
see the woman 1
see the car 1

the Dow Jones 10
the Dow rose 5
the Dow fell 5

p(cat | see the) = ?

p(puppy | see the) = ?

p(rose | the Dow) = ?

p(jumped | the Dow) = ?

Backoff models: absolute discounting

see the dog 1
see the cat 2
see the banana 4
see the man 1
see the woman 1
see the car 1

p(cat | see the) = ?

€

Pabsolute (z | xy) =

C(xyz) −D
C(xy)

if C(xyz) > 0

α(xy)Pabsolute (z | y) otherwise

€

2 −D
10

=
2 − 0.75
10

= .125

Backoff models: absolute discounting

see the dog 1
see the cat 2
see the banana 4
see the man 1
see the woman 1
see the car 1

p(puppy | see the) = ?

α(see the) = ?

How much probability mass did
we reserve/discount for the
bigram model?

€

Pabsolute (z | xy) =

C(xyz) −D
C(xy)

if C(xyz) > 0

α(xy)Pabsolute (z | y) otherwise

2/10/11

12

Backoff models: absolute discounting

see the dog 1
see the cat 2
see the banana 4
see the man 1
see the woman 1
see the car 1

p(puppy | see the) = ?

α(see the) = ?

of types starting with “see the” * D

count(“see the”)

For each of the unique trigrams, we
subtracted D/count(“see the”) from the
probability distribution

€

Pabsolute (z | xy) =

C(xyz) −D
C(xy)

if C(xyz) > 0

α(xy)Pabsolute (z | y) otherwise

Backoff models: absolute discounting

see the dog 1
see the cat 2
see the banana 4
see the man 1
see the woman 1
see the car 1

€

Pabsolute (z | xy) =

C(xyz) −D
C(xy)

if C(xyz) > 0

α(xy)Pabsolute (z | y) otherwise

p(puppy | see the) = ?

α(see the) = ?

€

reserved _mass(see the) =
6 *D
10

=
6 *0.75

10
= 0.45

distribute this probability mass to all
bigrams that we backed off to

of types starting with “see the” * D

count(“see the”)

Calculating α

  We have some number of bigrams we’re going to
backoff to, i.e. those X where C(see the X) = 0, that is
unseen trigrams starting with “see the”

  When we backoff, for each of these, we’ll be
including their probability in the model: P(X | the)

 αis the normalizing constant so that the sum of these
probabilities equals the reserved probability mass

€

p(X | the)
X :C (see the X) == 0

∑ = reserved _mass(see the)

Calculating α

  We can calculate α two ways
  Based on those we haven’t seen:

 Or, more often, based on those we do see:

€

α(see the) =
reserved _mass(see the)

p(X | the)
X :C (see the X) = 0
∑

€

α(see the) =
reserved _mass(see the)

1− p(X | the)
X :C (see the X) > 0

∑

2/10/11

13

Calculating α in general: trigrams

  Calculate the reserved mass

  Calculate the sum of the backed off probability. For bigram “A B”:

  Calculate α

reserved_mass(bigram) =
of types starting with bigram * D

count(bigram)

€

1− p(X | B)
X :C (A B X) > 0
∑

€

p(X | B)
X :C (A B X) = 0
∑either is fine in practice,

the left is easier

€

α(A B) =
reserved _mass(A B)

1− p(X | B)
X :C (A B X) > 0
∑

1 – the sum of the
bigram probabilities of
those trigrams that we
saw starting with bigram
A B

Calculating α in general: bigrams

  Calculate the reserved mass

  Calculate the sum of the backed off probability. For bigram “A B”:

  Calculate α

reserved_mass(unigram) =
of types starting with unigram * D

count(unigram)

€

1− p(X)
X :C (A X) > 0
∑

€

p(X)
X :C (A X) = 0
∑either is fine in practice,

the left is easier

€

α(A) =
reserved _mass(A)

1− p(X)
X :C (A X) > 0
∑

1 – the sum of the
unigram probabilities of
those bigrams that we
saw starting with word A

Calculating backoff models in practice

  Store the αs in another table
  If it’s a trigram backed off to a bigram, it’s a table keyed by the

bigrams
  If it’s a bigram backed off to a unigram, it’s a table keyed by the

unigrams

  Compute the αs during training
  After calculating all of the probabilities of seen unigrams/bigrams/

trigrams
  Go back through and calculate the αs (you should have all of the

information you need)

  During testing, it should then be easy to apply the backoff model
with the αs pre-calculated

Backoff models: absolute discounting

p(jumped | the Dow) = ?

α(the Dow) = ?

the Dow Jones 10
the Dow rose 5
the Dow fell 5

€

reserved _mass(the Dow) =
3*D
20

=
3*0.75

20
= 0.115

of types starting with “see the” * D

count(“see the”)

€

α(the Dow) =
reserved _mass(see the)

1− p(X | the)
X :C (the Dow X) > 0

∑

2/10/11

14

Backoff models: absolute discounting

  Two nice attributes:
 decreases if we’ve seen more bigrams

  should be more confident that the unseen trigram is no good

  increases if the bigram tends to be followed by lots of
other words
 will be more likely to see an unseen trigram

reserved_mass =
of types starting with bigram * D

count(bigram)

Kneser-Ney

  Idea: not all counts should be discounted with the same value

P(Francisco | eggplant) vs
P(stew | eggplant)

If we’ve never seen either, which should be more likely?
why?

What would an normal discounted backoff model say?

What is the problem?

common

rarer

Kneser-Ney

  Idea: not all counts should be discounted with the same value

P(Francisco | eggplant) vs
P(stew | eggplant)

Problem:
-  Both of these would have the same backoff parameter
since they’re both conditioning on eggplant
-  We then would end up picking based on which was most
frequent
-  However, even though Francisco tends to only be
preceded by a small number of words

Kneser-Ney

  Idea: not all counts should be discounted with the same
value

  “Francisco” is common, so backoff/interpolated
methods say it is likely
  But it only occurs in context of “San”

  “Stew” is common in many contexts

  Weight backoff by number of contexts word occurs in
P(Francisco | eggplant) low
P(stew | eggplant) higher

2/10/11

15

Kneser-Ney

€

Pabsolute (z | xy) =

C(xyz) −D
C(xy)

if C(xyz) > 0

α(xy)Pabsolute (z | y) otherwise

€

Pabsolute (z | xy) =

C(xyz) −D
C(xy)

if C(xyz) > 0

α(xy)PCONTINUATION (z | y) otherwise

instead of the probability of
the word/bigram occurring,
use the probability of the

PCONTINUATION

  Relative to other words, how likely is this word to
continue (i.e. follow) many other words

€

PCONTINUATION (z | y) =
types ending with yz

types ending with bigram bc
bc∈bigrams
∑

€

=
{xyz :C(xyz) > 0}
{abc :C(abc) > 0}

bc∈bigrams
∑

Other language model ideas?

  Skipping models: rather than just the previous 2 words,
condition on the previous word and the 3rd word back,
etc.

  Caching models: phrases seen are more likely to be seen
again (helps deal with new domains)

  Clustering:
  some words fall into categories (e.g. Monday, Tuesday,

Wednesday…)
  smooth probabilities with category probabilities

  Domain adaptation:
  interpolate between a general model and a domain specific

model

Smoothing results

2/10/11

16

Language Modeling Toolkits

  SRI
 http://www-speech.sri.com/projects/srilm/

  CMU
 http://www.speech.cs.cmu.edu/SLM_info.html

