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LANGUAGE MODELING: 
SMOOTHING 
David Kauchak 
CS159 – Spring 2011 

some slides adapted from 
Jason Eisner 

Admin 

  Assignment 2 out 
 bigram language modeling 
 Java 
 Can work with partners 

 Anyone looking for a partner? 

 Due Wednesday 2/16 (but start working on it now!) 
 HashMap 

Admin 

  Our first quiz next Monday (2/14) 
  In-class (~30 min.) 
 Topics 

  corpus analysis 
  regular expressions 
 probability 
  language modeling 

 Open book 
 we’ll try it out for this one 
 better to assume closed book (30 minutes goes by fast!) 

 5% of your grade 
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Today 

smoothing 
techniques 

Today 

  Take home ideas: 
 Key idea of smoothing is to redistribute the probability 

to handle less see (or never seen) events 
 Still must always maintain a true probability distribution 

 Lots of ways of smoothing data 
 Should take into account features in your data! 
 For n-grams, backoff models and, in particular, Kneser-

Ney smoothing work well 

Smoothing 

P(I think today is a good day to be me) = 

P(I | <start> <start>) x 

P(think | <start> I) x 

P(today| I think) x 

P(is| think today) x 

P(a| today is) x 

P(good| is a) x 

… 

If any of these has never been 
seen before, prob = 0! 

What if our test set contains the following sentence, but one of the 
trigrams never occurred in our training data? 

Smoothing 

P(I think today is a good day to be me) = 

P(I | <start> <start>) x 

P(think | <start> I) x 

P(today| I think) x 

P(is| think today) x 

P(a| today is) x 

P(good| is a) x 

… 

These probability estimates 
may be inaccurate.  
Smoothing can help reduce 
some of the noise. 



2/10/11 

3 

Add-lambda smoothing 

  A large dictionary makes novel events too probable. 

  add λ = 0.01 to all counts 

see the abacus   1 1/3 1.01 1.01/203 
see the abbot  0 0/3 0.01 0.01/203 

see the abduct 0 0/3 0.01 0.01/203 
see the above 2 2/3 2.01 2.01/203 
see the Abram 0 0/3 0.01 0.01/203 

… 0.01 0.01/203 
see the zygote 0 0/3 0.01 0.01/203 

Total 3 3/3 203 

Vocabulary 

  n-gram language modeling assumes we have a fixed 
vocabulary 
 why? 

  Whether implicit or explicit, an n-gram language model 
is defined over a finite, fixed vocabulary 

  What happens when we encounter a word not in our 
vocabulary (Out Of Vocabulary)? 
  If we don’t do anything, prob = 0 
  Smoothing doesn’t really help us with this! 

Vocabulary 

  To make this explicit, smoothing helps us with… 

see the abacus   1 1.01 
see the abbot  0 0.01 

see the abduct 0 0.01 
see the above 2 2.01 
see the Abram 0 0.01 

… 0.01 
see the zygote 0 0.01 

all entries in our vocabulary 

Vocabulary 

  and… 
Vocabulary 

a 
able 
about 
account 
acid 
across 
… 
young 
zebra 

10 
1 
2 
0 
0 
3 
… 
1 
0 

Counts 

10.01 
1.01 
2.01 
0.01 
0.01 
3.01 
… 
1.01 
0.01 

Smoothed counts 

How can we have words in our 
vocabulary we’ve never seen before? 
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Vocabulary 

  Choosing a vocabulary: ideas? 
 Grab a list of English words from somewhere 
 Use all of the words in your training data 
 Use some of the words in your training data 

  for example, all those the occur more than k times 

  Benefits/drawbacks? 
  Ideally your vocabulary should represents words your likely 

to see 
  Too many words, end up washing out your probability 

estimates (and getting poor estimates) 
  Too few, lots of out of vocabulary 

Vocabulary 

  No matter your chosen vocabulary, you’re still going 
to have out of vocabulary (OOV) 

  How can we deal with this? 
  Ignore words we’ve never seen before 

 Somewhat unsatisfying, though can work depending on the 
application 

 Probability is then dependent on how many in vocabulary 
words are seen in a sentence/text 

 Use a special symbol for OOV words and estimate the 
probability of out of vocabulary 

Out of vocabulary 

  Add an extra word in your vocabulary to denote 
OOV (<OOV>, <UNK>) 

  Replace all words in your training corpus not in the 
vocabulary with <UNK> 
 You’ll get bigrams, trigrams, etc with <UNK> 

 p(<UNK> | “I am”) 
 p(fast | “I <UNK>”) 

  During testing, similarly replace all OOV with 
<UNK> 

Choosing a vocabulary 

  A common approach (and the one we’ll use for the 
assignment): 
 Replace the first occurrence of each word by <UNK> in 

a data set 
 Estimate probabilities normally 

  Vocabulary then is all words that occurred two or 
more times 

  This also discounts all word counts by 1 and gives 
that probability mass to <UNK> 
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Storing the table 

see the abacus   1 1/3 1.01 1.01/203 
see the abbot  0 0/3 0.01 0.01/203 

see the abduct 0 0/3 0.01 0.01/203 
see the above 2 2/3 2.01 2.01/203 
see the Abram 0 0/3 0.01 0.01/203 

… 0.01 0.01/203 
see the zygote 0 0/3 0.01 0.01/203 

Total 3 3/3 203 

How are we storing this table? 
Should we store all entries? 

Storing the table 

  Hashtable 
  fast retrieval 
  fairly good memory usage 

  Only store those entries of things we’ve seen 
  for example, we don’t store V3 trigrams 

  For trigrams we can: 
 Store one hashtable with bigrams as keys 
 Store a hashtable of hashtables (I’m recommending this) 

Storing the table:  
add-lambda smoothing 

  For those we’ve seen before: 

  Unseen n-grams: p(z|ab) = ? 
€ 

P(c | ab) =
C(abc) + λ
C(ab) + λV

€ 

P(z | ab) =
λ

C(ab) + λV

Store the lower order counts 
(or probabilities) 

How common are novel events? 
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How likely are novel/unseen events? 
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How common are novel events? 
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If we follow the pattern, something like this… 

Good-Turing estimation 
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Good-Turing estimation 

  Nc = number of words/bigrams occurring c times 
  Replace MLE counts for things with count c: 

  Estimate the probability of novel events as: € 

c* = (c +1) Nc+1

Nc

scale down the next 
frequency up  

€ 

p(unseen) =
N1

Total_words

Good-Turing (classic example) 

  Imagine you are fishing 
  8 species: carp, perch, whitefish, trout, salmon, eel, catfish, bass 

  You have caught  
  10 carp, 3 perch, 2 whitefish, 1 trout, 1 salmon, 1 eel = 18 fish 

  How likely is it that the next fish caught is from a new species 
(one not seen in our previous catch)? 

€ 

p(unseen) =
N1

Total_words

€ 

=
3
18
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Good-Turing (classic example) 

  Imagine you are fishing 
  8 species: carp, perch, whitefish, trout, salmon, eel, catfish, bass 

  You have caught  
  10 carp, 3 perch, 2 whitefish, 1 trout, 1 salmon, 1 eel = 18 fish 

  How likely is it that next species is trout? 

€ 

c* = (c +1) Nc+1

Nc

€ 

= 2* 1
3

= 0.67

€ 

0.67
18

Good-Turing (classic example) 

  Imagine you are fishing 
  8 species: carp, perch, whitefish, trout, salmon, eel, catfish, bass 

  You have caught  
  10 carp, 3 perch, 2 whitefish, 1 trout, 1 salmon, 1 eel = 18 fish 

  How likely is it that next species is perch? 

€ 

c* = (c +1) Nc+1

Nc

N4 is 0! 

Nice idea, but kind of a pain to 
implement in practice 

Problems with frequency based smoothing 

  The following bigrams have never been seen: 

p( X| ate) p( X | San ) 

Which would add-lambda pick as most likely? 

Which would you pick? 

Witten-Bell Discounting 

  Some words are more likely to be followed by new words 

San 

Diego 
Francisco 
Luis 
Jose 
Marcos 

ate 

food 
apples 
bananas 
hamburgers 
a lot 
for two 
grapes 
… 
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Witten-Bell Discounting 

  Probability mass is shifted around, depending on 
the context of words 

  If P(wi | wi-1,…,wi-m) = 0, then the smoothed 
probability PWB(wi | wi-1,…,wi-m) is higher if the 
sequence wi-1,…,wi-m  occurs with many different 
words wi 

Witten-Bell Smoothing 

  For bigrams 
 T(wi-1) is the number of different words (types) that 

occur to the right of wi-1 

 N(wi-1) is the number of times wi-1 occurred 

 Z(wi-1) is the number of bigrams in the current data set 
starting with wi-1 that do not occur in the training data 

Witten-Bell Smoothing 

  if c(wi-1,wi) > 0 

€ 

PWB (wi |wi−1) =
c(wi−1wi)

N(wi−1) + T(wi−1)

# times we saw the bigram 

# times wi-1 occurred   +   # of types to the right of wi-1 

Witten-Bell Smoothing 

  If c(wi-1,wi) = 0 

€ 

PWB (wi |wi−1) =
T(wi−1)

Z(wi−1)(N + T(wi−1))
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Problems with frequency based smoothing 

  The following trigrams have never been seen: 

p( cumquat | see the ) 

p( zygote | see the ) p( car | see the ) 

Which would add-lambda pick as most likely?  
Good-Turing? Witten-Bell? 

Which would you pick? 

Better smoothing approaches 

  Utilize information in lower-order models 

  Interpolation 
  p*(z| x,y) = λp(z | x, y) + μp(z | y) + (1-λ-μ)p(z) 

  Combine the probabilities in some linear combination 

  Backoff 

  Often k = 0 (or 1) 

  Combine the probabilities by “backing off” to lower models only 
when we don’t have enough information € 

P(z | xy) =
C*(xyz)
C(xy)

if C(xyz) > k

α(xy)P(z | y) otherwise

 

 
 

  

Smoothing: Simple Interpolation 

  Trigram is very context specific, very noisy 
  Unigram is context-independent, smooth 
  Interpolate Trigram, Bigram, Unigram for best 

combination 
  How should we determine λ andμ?  

€ 

P(z | xy) ≈ λ C(xyz)
C(xy)

+ µ
C(yz)
C(y)

+ (1− λ −µ)C(z)
C(•)

Smoothing: Finding parameter values 

  Just like we talked about before, split training data 
into training and development 
  can use cross-validation, leave-one-out, etc. 

  Try lots of different values for λ, µ on heldout data, 
pick best 

  Two approaches for finding these efficiently 
 EM (expectation maximization) 
 “Powell search” – see Numerical Recipes in C 
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Smoothing: Jelinek-Mercer 

  Simple interpolation: 

  Should all bigrams be smoothed equally? Which of 
these is it more likely to start an unseen trigram? 

€ 

Psmooth (z | xy) = λ
C(xyz)
C(xy)

+ (1− λ)Psmooth (z | y)

Smoothing: Jelinek-Mercer 

  Simple interpolation: 

  Multiple parameters: smooth a little after “The Dow”,  
more after “Adobe acquired”  

€ 

Psmooth (z | xy) = λ
C(xyz)
C(xy)

+ (1− λ)Psmooth (z | y)

€ 

Psmooth (z | xy) =

λ(C(xy))C(xyz)
C(xy)

+ (1− λ(C(xy))Psmooth (z | y)

Smoothing: Jelinek-Mercer continued 

  Bin counts by frequency and assign λs for each bin 

  Find  λs  by cross-validation on held-out data 
€ 

Psmooth (z | xy) =

λ(C(xy))C(xyz)
C(xy)

+ (1− λ(C(xy))Psmooth (z | y)

Backoff models: absolute discounting 

  Subtract some absolute number from each of 
the counts (e.g. 0.75) 
 will have a large effect on low counts 
 will have a small effect on large counts 

€ 

Pabsolute (z | xy) =

C(xyz) −D
C(xy)

if C(xyz) > 0

α(xy)Pabsolute (z | y) otherwise
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Backoff models: absolute discounting 

€ 

Pabsolute (z | xy) =

C(xyz) −D
C(xy)

if C(xyz) > 0

α(xy)Pabsolute (z | y) otherwise

 
 
 

  

What is α(xy)? 

Backoff models: absolute discounting 

€ 

Pabsolute (z | xy) =

C(xyz) −D
C(xy)

if C(xyz) > 0

α(xy)Pabsolute (z | y) otherwise

 
 
 

  

see the dog   1 
see the cat   2 
see the banana  4 
see the man   1 
see the woman  1 
see the car   1 

the Dow Jones  10 
the Dow rose   5 
the Dow fell   5 

p( cat | see the ) = ? 

p( puppy | see the ) = ? 

p( rose | the Dow ) = ? 

p( jumped | the Dow ) = ? 

Backoff models: absolute discounting 

see the dog   1 
see the cat   2 
see the banana  4 
see the man   1 
see the woman  1 
see the car   1 

p( cat | see the ) = ? 

€ 

Pabsolute (z | xy) =

C(xyz) −D
C(xy)

if C(xyz) > 0

α(xy)Pabsolute (z | y) otherwise

 
 
 

  

€ 

2 −D
10

=
2 − 0.75
10

= .125

Backoff models: absolute discounting 

see the dog   1 
see the cat   2 
see the banana  4 
see the man   1 
see the woman  1 
see the car   1 

p( puppy | see the ) = ? 

α(see the) = ? 

How much probability mass did 
we reserve/discount for the 
bigram model? 

€ 

Pabsolute (z | xy) =

C(xyz) −D
C(xy)

if C(xyz) > 0

α(xy)Pabsolute (z | y) otherwise
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Backoff models: absolute discounting 

see the dog   1 
see the cat   2 
see the banana  4 
see the man   1 
see the woman  1 
see the car   1 

p( puppy | see the ) = ? 

α(see the) = ? 

# of types starting with “see the” * D 

count(“see the”) 

For each of the unique trigrams, we 
subtracted D/count(“see the”) from the 
probability distribution 

€ 

Pabsolute (z | xy) =

C(xyz) −D
C(xy)

if C(xyz) > 0

α(xy)Pabsolute (z | y) otherwise

 
 
 

  

Backoff models: absolute discounting 

see the dog   1 
see the cat   2 
see the banana  4 
see the man   1 
see the woman  1 
see the car   1 

€ 

Pabsolute (z | xy) =

C(xyz) −D
C(xy)

if C(xyz) > 0

α(xy)Pabsolute (z | y) otherwise

 
 
 

  

p( puppy | see the ) = ? 

α(see the) = ? 

€ 

reserved _mass(see the) =
6 *D
10

=
6 *0.75

10
= 0.45

distribute this probability mass to all 
bigrams that we backed off to 

# of types starting with “see the” * D 

count(“see the”) 

Calculating α 

  We have some number of bigrams we’re going to 
backoff to, i.e. those X where C(see the X) = 0, that is 
unseen trigrams starting with “see the” 

  When we backoff, for each of these, we’ll be 
including their probability in the model: P(X | the) 

 αis the normalizing constant so that the sum of these 
probabilities equals the reserved probability mass 

€ 

p(X | the)
X :C (see the X) == 0

∑ = reserved _mass(see the)

Calculating α 

  We can calculate α two ways 
  Based on those we haven’t seen: 

 Or, more often, based on those we do see: 

€ 

α(see the) =
reserved _mass(see the)

p(X | the)
X :C (see the X) = 0
∑

€ 

α(see the) =
reserved _mass(see the)

1− p(X | the)
X :C (see the X) >  0

∑
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Calculating α in general: trigrams 

  Calculate the reserved mass 

  Calculate the sum of the backed off probability.  For bigram “A B”: 

  Calculate α 

reserved_mass(bigram) =  
# of types starting with bigram * D 

count(bigram) 

€ 

1− p(X | B)
X :C (A B X) >  0
∑

€ 

p(X | B)
X :C (A B X) = 0
∑either is fine in practice, 

the left is easier 

€ 

α(A B) =
reserved _mass(A B)

1− p(X | B)
X :C (A B X) >  0
∑

1 – the sum of the 
bigram probabilities of 
those trigrams that we 
saw starting with bigram 
A B 

Calculating α in general: bigrams 

  Calculate the reserved mass 

  Calculate the sum of the backed off probability.  For bigram “A B”: 

  Calculate α 

reserved_mass(unigram) =  
# of types starting with unigram * D 

count(unigram) 

€ 

1− p(X)
X :C (A X) >  0
∑

€ 

p(X)
X :C (A X) = 0
∑either is fine in practice, 

the left is easier 

€ 

α(A) =
reserved _mass(A)

1− p(X)
X :C (A X) >  0
∑

1 – the sum of the 
unigram probabilities of 
those bigrams that we 
saw starting with word A 

Calculating backoff models in practice 

  Store the αs in another table 
  If it’s a trigram backed off to a bigram, it’s a table keyed by the 

bigrams 
  If it’s a bigram backed off to a unigram, it’s a table keyed by the 

unigrams 

  Compute the αs during training 
  After calculating all of the probabilities of seen unigrams/bigrams/

trigrams 
  Go back through and calculate the αs (you should have all of the 

information you need) 

  During testing, it should then be easy to apply the backoff model 
with the αs pre-calculated  

Backoff models: absolute discounting 

p( jumped | the Dow ) = ? 

α(the Dow) = ? 

the Dow Jones  10 
the Dow rose   5 
the Dow fell   5 

€ 

reserved _mass(the Dow) =
3*D
20

=
3*0.75

20
= 0.115

# of types starting with “see the” * D 

count(“see the”) 

€ 

α(the Dow) =
reserved _mass(see the)

1− p(X | the)
X :C ( the Dow X) >  0

∑
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Backoff models: absolute discounting 

  Two nice attributes: 
 decreases if we’ve seen more bigrams 

  should be more confident that the unseen trigram is no good 

  increases if the bigram tends to be followed by lots of 
other words 
 will be more likely to see an unseen trigram 

reserved_mass =  
# of types starting with bigram * D 

count(bigram) 

Kneser-Ney 

  Idea: not all counts should be discounted with the same value 

P(Francisco | eggplant) vs  
P(stew | eggplant) 

If we’ve never seen either, which should be more likely? 
why? 

What would an normal discounted backoff model say? 

What is the problem? 

common 

rarer 

Kneser-Ney 

  Idea: not all counts should be discounted with the same value 

P(Francisco | eggplant) vs  
P(stew | eggplant) 

Problem: 
-  Both of these would have the same backoff parameter 
since they’re both conditioning on eggplant 
-  We then would end up picking based on which was most 
frequent 
-  However, even though Francisco tends to only be 
preceded by a small number of words 

Kneser-Ney 

  Idea: not all counts should be discounted with the same 
value 

   “Francisco” is common, so backoff/interpolated 
methods say it is likely 
  But it only occurs in context of “San” 

  “Stew” is common in many contexts 

  Weight backoff by number of contexts word occurs in 
P(Francisco | eggplant)   low 
P(stew | eggplant)   higher 
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Kneser-Ney 

€ 

Pabsolute (z | xy) =

C(xyz) −D
C(xy)

if C(xyz) > 0

α(xy)Pabsolute (z | y) otherwise

 
 
 

  

€ 

Pabsolute (z | xy) =

C(xyz) −D
C(xy)

if C(xyz) > 0

α(xy)PCONTINUATION (z | y) otherwise

 
 
 

  

instead of the probability of 
the word/bigram occurring, 
use the probability of the  

PCONTINUATION 

  Relative to other words, how likely is this word to 
continue (i.e. follow) many other words 

€ 

PCONTINUATION (z | y) =
#  types ending with yz

# types ending with bigram bc
bc∈bigrams
∑

€ 

=
{xyz :C(xyz) > 0}
{abc :C(abc) > 0}

bc∈bigrams
∑

Other language model ideas? 

  Skipping models: rather than just the previous 2 words, 
condition on the previous word and the 3rd word back, 
etc. 

  Caching models: phrases seen are more likely to be seen 
again (helps deal with new domains) 

  Clustering:  
  some words fall into categories (e.g. Monday, Tuesday, 

Wednesday…) 
  smooth probabilities with category probabilities 

  Domain adaptation: 
  interpolate between a general model and a domain specific 

model 

Smoothing results 
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Language Modeling Toolkits 

  SRI 
 http://www-speech.sri.com/projects/srilm/ 

  CMU 
 http://www.speech.cs.cmu.edu/SLM_info.html 


