

### Admin

- Assignment 2 out
  - bigram language modeling
  - 🗖 Java
  - Can work with partners
  - Anyone looking for a partner?
  - Due Wednesday 2/16 (but start working on it now!)
  - 🗖 HashMap

### Admin

- Our first quiz next Monday (2/14)
   In-class (~30 min.)
  - Topics
  - corpus analysis
  - regular expressions
  - probability
  - language modeling
  - Open book
    - we'll try it out for this one
  - better to assume closed book (30 minutes goes by fast!)
  - $\blacksquare$  5% of your grade



# Smoothing

What if our test set contains the following sentence, but one of the trigrams never occurred in our training data?

P(I think today is a good day to be me) =

- P(I | <start> <start>) x
- $P(think \ | \ <\! start\! > l) \ x$

P(today | 1 think) x P(is | think today) x

- P(a | today is) x
- P(good | is a) x
- ...

If any of these has never been seen before, prob = 0!



| Add-lambda smoothing                 |                                                     |     |      |          |  |  |
|--------------------------------------|-----------------------------------------------------|-----|------|----------|--|--|
|                                      |                                                     | •   |      |          |  |  |
| A large dict                         | A large dictionary makes novel events too probable. |     |      |          |  |  |
| • add $\lambda = 0.01$ to all counts |                                                     |     |      |          |  |  |
|                                      |                                                     |     |      |          |  |  |
|                                      |                                                     |     |      |          |  |  |
| see the abacu                        | s 1                                                 | 1/3 | 1.01 | 1.01/203 |  |  |
| see the abbo                         | ot 0                                                | 0/3 | 0.01 | 0.01/203 |  |  |
| see the abdu                         | t 0                                                 | 0/3 | 0.01 | 0.01/203 |  |  |
| see the abov                         | e 2                                                 | 2/3 | 2.01 | 2.01/203 |  |  |
| see the Abra                         | n 0                                                 | 0/3 | 0.01 | 0.01/203 |  |  |
|                                      |                                                     |     | 0.01 | 0.01/203 |  |  |
| see the zygol                        | e 0                                                 | 0/3 | 0.01 | 0.01/203 |  |  |
| Tot                                  | al 3                                                | 3/3 | 203  |          |  |  |
|                                      |                                                     |     |      |          |  |  |



- n-gram language modeling assumes we have a fixed vocabulary
  - why?
- Whether implicit or explicit, an n-gram language model is defined over a finite, fixed vocabulary
- What happens when we encounter a word not in our vocabulary (Out Of Vocabulary)?
  - If we don't do anything, prob = 0
  - Smoothing doesn't really help us with this!

| Vocabulary                                     |   |      |  |  |
|------------------------------------------------|---|------|--|--|
| To make this explicit, smoothing helps us with |   |      |  |  |
| all entries in our vocabulary                  |   |      |  |  |
|                                                |   |      |  |  |
| see the abacus                                 | 1 | 1.01 |  |  |
| see the abbot                                  | 0 | 0.01 |  |  |
| see the abduct                                 | 0 | 0.01 |  |  |
| see the above                                  | 2 | 2.01 |  |  |
| see the Abram                                  | 0 | 0.01 |  |  |
|                                                |   | 0.01 |  |  |
| see the zygote                                 | 0 | 0.01 |  |  |
|                                                |   |      |  |  |



#### Vocabulary

#### □ Choosing a vocabulary: ideas?

- Grab a list of English words from somewhere
- Use all of the words in your training data
- $\hfill\square$  Use some of the words in your training data
- for example, all those the occur more than k times
- Benefits/drawbacks?
  - Ideally your vocabulary should represents words your likely to see
  - Too many words, end up washing out your probability estimates (and getting poor estimates)
  - Too few, lots of out of vocabulary

#### Vocabulary

- No matter your chosen vocabulary, you're still going to have out of vocabulary (OOV)
- □ How can we deal with this?
  - Ignore words we've never seen before
    - Somewhat unsatisfying, though can work depending on the application
    - Probability is then dependent on how many in vocabulary words are seen in a sentence/text
  - Use a special symbol for OOV words and estimate the probability of out of vocabulary

#### Out of vocabulary

- Add an extra word in your vocabulary to denote OOV (<OOV>, <UNK>)
- Replace all words in your training corpus not in the vocabulary with <UNK>
  - You'll get bigrams, trigrams, etc with <UNK>
     p(<UNK> | "I am")
    - p(fast | "I <UNK>")
- During testing, similarly replace all OOV with <UNK>

#### Choosing a vocabulary

- A common approach (and the one we'll use for the assignment):
  - Replace the first occurrence of each word by <UNK> in a data set
  - Estimate probabilities normally
- Vocabulary then is all words that occurred two or more times
- This also discounts all word counts by 1 and gives that probability mass to <UNK>

| Storing the table                                              |   |     |      |          |  |  |
|----------------------------------------------------------------|---|-----|------|----------|--|--|
| How are we storing this table?<br>Should we store all entries? |   |     |      |          |  |  |
|                                                                |   |     | I    | 1        |  |  |
| see the abacus                                                 | 1 | 1/3 | 1.01 | 1.01/203 |  |  |
| see the abbot                                                  | 0 | 0/3 | 0.01 | 0.01/203 |  |  |
| see the abduct                                                 | 0 | 0/3 | 0.01 | 0.01/203 |  |  |
| see the above                                                  | 2 | 2/3 | 2.01 | 2.01/203 |  |  |
| see the Abram                                                  | 0 | 0/3 | 0.01 | 0.01/203 |  |  |
|                                                                |   |     | 0.01 | 0.01/203 |  |  |
| see the zygote                                                 | 0 | 0/3 | 0.01 | 0.01/203 |  |  |
| Total                                                          | 3 | 3/3 | 203  |          |  |  |
|                                                                | 5 | 5/5 | 200  | I        |  |  |





□ For those we've seen before:

$$P(c \mid ab) = \frac{C(abc) + \lambda}{C(ab) + \lambda V}$$

□ Unseen n-grams: p(z | ab) = ?

$$P(z \mid ab) = \frac{\lambda}{C(ab) + \lambda V}$$

Store the lower order counts (or probabilities)







### Good-Turing estimation

N<sub>c</sub> = number of words/bigrams occurring c times
 Replace MLE counts for things with count c:

$$c^* = (c+1)\frac{N_{c+1}}{N_c}$$

scale down the next frequency up

Estimate the probability of novel events as:

$$p(unseen) = \frac{N_1}{Total\_words}$$







Problems with frequency based smoothing

The following bigrams have never been seen:

p(X | San) p(X | ate)

Which would add-lambda pick as most likely?

Which would you pick?

# Witten-Bell Discounting

Some words are more likely to be followed by new words

Diego Francisco San Luis Jose Marcos food apples bananas ate hamburgers a lot for two grapes ...

# Witten-Bell Discounting

- Probability mass is shifted around, depending on the context of words
- □ If P(w<sub>i</sub> | w<sub>i-1</sub>,...,w<sub>i-m</sub>) = 0, then the smoothed probability P<sub>WB</sub>(w<sub>i</sub> | w<sub>i-1</sub>,...,w<sub>i-m</sub>) is higher if the sequence w<sub>i-1</sub>,...,w<sub>i-m</sub> occurs with many different words w<sub>i</sub>

### Witten-Bell Smoothing

#### For bigrams

- □ T(w<sub>i-1</sub>) is the number of different words (types) that occur to the right of w<sub>i-1</sub>
- $\hfill N(w_{i-1})$  is the number of times  $w_{i-1}$  occurred
- $\square$  Z(w\_{i-1}) is the number of bigrams in the current data set starting with w\_{i-1} that do not occur in the training data

# Witten-Bell Smoothing

$$P^{WB}(w_i \mid w_{i-1}) = \frac{c(w_{i-1}w_i)}{N(w_{i-1}) + T(w_{i-1})}$$

# times we saw the bigram

# times  $w_{i-1}$  occurred + # of types to the right of  $w_{i-1}$ 

# Witten-Bell Smoothing

 $\Box \text{ If } c(w_{i-1}, w_i) = 0$ 

$$P^{WB}(w_i \mid w_{i-1}) = \frac{T(w_{i-1})}{Z(w_{i-1})(N + T(w_{i-1}))}$$





### Smoothing: Simple Interpolation

$$P(z \mid xy) \approx \lambda \frac{C(xyz)}{C(xy)} + \mu \frac{C(yz)}{C(y)} + (1 - \lambda - \mu) \frac{C(z)}{C(\bullet)}$$

- □ Trigram is very context specific, very noisy
- Unigram is context-independent, smooth
- Interpolate Trigram, Bigram, Unigram for best combination
- $\square$  How should we determine  $\lambda$  and  $\mu$ ?



- Just like we talked about before, split training data into training and development
   can use cross-validation, leave-one-out, etc.
- $\square$  Try lots of different values for  $\lambda,\,\mu$  on heldout data, pick best
- Two approaches for finding these efficiently
   EM (expectation maximization)
  - "" "Powell search" see Numerical Recipes in C



Smoothing: Jelinek-Mercer  
Simple interpolation:  

$$P_{smooth}(z \mid xy) = \lambda \frac{C(xyz)}{C(xy)} + (1 - \lambda)P_{smooth}(z \mid y)$$
Multiple parameters: smooth a little after "The Dow",  
more after "Adobe acquired"  

$$P_{smooth}(z \mid xy) = \lambda(C(xy))\frac{C(xyz)}{C(xy)} + (1 - \lambda(C(xy))P_{smooth}(z \mid y))$$

Smoothing: Jelinek-Mercer continued

$$P_{smooth}(z \mid xy) =$$

$$\lambda(C(xy))\frac{C(xyz)}{C(xy)} + (1 - \lambda(C(xy))P_{smooth}(z \mid y)$$

Bin counts by frequency and assign λs for each bin
 Find λs by cross-validation on held-out data







| Backoff m                                      | ode         | ls: absolute discounti                                                                   | ing                        |
|------------------------------------------------|-------------|------------------------------------------------------------------------------------------|----------------------------|
| see the dog<br>see the cat                     | 1<br>2      | p( cat   see the ) = ?                                                                   |                            |
| see the banana<br>see the man<br>see the woman | 4<br>1<br>1 | $\frac{2-D}{10} = \frac{2-0.75}{10} = .125$                                              |                            |
|                                                | I           |                                                                                          |                            |
|                                                |             | $P_{absolute}(z \mid xy) = $                                                             |                            |
|                                                |             | $\begin{cases} \frac{C(xyz) - D}{C(xy)} \\ \alpha(xy)P_{absolute}(z \mid y) \end{cases}$ | if C(xyz) > 0<br>otherwise |







### Calculating $\alpha$

- We have some number of bigrams we're going to backoff to, i.e. those X where C(see the X) = 0, that is unseen trigrams starting with "see the"
- When we backoff, for each of these, we'll be including their probability in the model: P(X | the)
- α is the normalizing constant so that the sum of these probabilities equals the reserved probability mass

 $\sum_{X:C(\text{see the } X) = 0} p(X | \text{the}) = reserved\_mass(\text{see the})$ 

# Calculating $\alpha$

□ We can calculate *Q* two ways
■ Based on those we haven't seen:

$$\alpha(\text{see the}) = \frac{reserved\_mass(\text{see the})}{\sum_{X \in \{\text{see the } X\} = 0} p(X \mid \text{the})}$$

Or, more often, based on those we do see:

$$\alpha(\text{see the}) = \frac{reserved\_mass(\text{see the})}{1 - \sum_{X:C(\text{see the }X) > 0} p(X | \text{the})}$$





#### Calculating backoff models in practice

- Store the  $\alpha$  s in another table
- If it's a trigram backed off to a bigram, it's a table keyed by the bigrams
- If it's a bigram backed off to a unigram, it's a table keyed by the unigrams
- $\Box$  Compute the  $\alpha$ 's during training
  - After calculating all of the probabilities of seen unigrams/bigrams/ trigrams
  - $\square$  Go back through and calculate the  $\alpha$  s (you should have all of the information you need)
- During testing, it should then be easy to apply the backoff model with the α's pre-calculated





# Kneser-Ney

Idea: not all counts should be discounted with the same value

P(Francisco | eggplant) vs P(stew | eggplant)

If we've never seen either, which should be more likely?

What would an normal discounted backoff model say?

What is the problem?

#### **Kneser-Ney**

Idea: not all counts should be discounted with the same value

#### P(Francisco | eggplant) vs P(stew | eggplant)

Problem:

- Both of these would have the same backoff parameter
- since they're both conditioning on eggplant
- We then would end up picking based on which was most
- frequent
- However, even though Francisco tends to only be
- preceded by a small number of words

#### **Kneser-Ney**

- Idea: not all counts should be discounted with the same value
- "Francisco" is common, so backoff/interpolated methods say it is likely
- But it only occurs in context of "San"
- "Stew" is common in many contexts

Weight backoff by number of contexts word occurs in

P(Francisco | eggplant) low P(stew | eggplant) higher





- Skipping models: rather than just the previous 2 words, condition on the previous word and the 3<sup>rd</sup> word back, etc.
- Caching models: phrases seen are more likely to be seen again (helps deal with new domains)
- Clustering:
  - some words fall into categories (e.g. Monday, Tuesday,
  - Wednesday...)
  - smooth probabilities with category probabilities
- Domain adaptation:
  - interpolate between a general model and a domain specific model



# Language Modeling Toolkits

SRI

<u>http://www-speech.sri.com/projects/srilm/</u>

CMU

http://www.speech.cs.cmu.edu/SLM\_info.html