Admin

- How did assignment 1 go?
 - How did you feel about not handing in code?

- Assignment 2 will be out soon on language modeling

- Readings
 - make sure you’re keeping up with them
 - I will post a popular media article for next week (probably Monday) to read and discuss in class

In-class exercise

- How did it go?
 - Did you make it through all of the questions?

- Estimating probabilities
 - How accurate were your estimates for the average draw from 1-13 with 10, 50 and 100 draws?
 - How accurate were your estimates for the single card?

- Poker face
 - How probable is a royal flush? How does this compare to NLP probabilities?

- Birthdays
 - Any shared birthdays?
 - Anyone’s birthday that day? week?

- Monty hall
 - should you switch?

- The Coin game
 - HHH vs. THT
 - This is sort of like the language modeling task we’ll look at today
Independence

- Two variables are independent if they do not effect each other.

- For two independent variables, knowing the value of one does not change the probability distribution of the other variable.
 - The result of the toss of a coin is independent of a roll of a dice.
 - Price of tea in England is independent of the result of a general election in Canada.

Independent or Dependent?

- Catching a cold and enjoying reading books
- Miles per gallon and driving habits
- Height and longevity of life

Independent variables

- How does independence affect our probability equations/properties?

- If A and B are independent (written ...)
 - $P(A,B) = P(A)P(B)$
 - $P(A|B) = P(A)$
 - $P(B|A) = P(B)$

Conditional Independence

- Dependent events can become independent given certain other events.

- Examples,
 - Height and length of life
 - "Correlation" studies
 - Size of your lawn and length of life.

- If A, B are conditionally independent of C
 - $P(A,B|C) = P(A|C)P(B|C)$
 - $P(A|B,C) = P(A|C)$
 - $P(B|A,C) = P(B|C)$
 - but $P(A,B) \neq P(A)P(B)$
Assume independence

- Sometimes we will assume two variables are independent (or conditionally independent) even though they’re not

- Why?
 - Creates a simpler model
 - $p(X,Y)$ many more variables than just $p(X)$ and $p(Y)$
 - May not be able to estimate the more complicated model

Language modeling

- What does natural language look like?

- More specifically in NLP, probabilistic model

- Two related questions:
 - $p(\text{sentence})$
 - $p(\text{"I like to eat pizza"})$
 - $p(\text{"pizza like I eat"})$
 - $p(\text{word | previous words})$
 - $p(\text{"pizza" | "I like to eat"})$
 - $p(\text{"garbage" | "I like to eat"})$
 - $p(\text{"run" | "I like to eat"})$

Language modeling

- How might these models be useful?
 - Language generation tasks
 - machine translation
 - summarization
 - simplification
 - speech recognition
 - …
 - Text correction
 - spelling correction
 - grammar correction

Ideas?

- $p(\text{"I like to eat pizza"})$
- $p(\text{"pizza like I eat"})$
- $p(\text{"pizza" | "I like to eat"})$
- $p(\text{"garbage" | "I like to eat"})$
- $p(\text{"run" | "I like to eat"})$
Look at a corpus

Language modeling

I think today is a good day to be me

Language modeling is about dealing with data sparsity!

Language model is really a probabilistic explanation of how the sentence was generated

Key idea:
- break this generation process into smaller steps
- estimate the probabilities of these smaller steps
- the overall probability is the combined product of the steps

Two approaches:
- n-gram language modeling
 - Start at the beginning of the sentence
 - Generate one word at a time based on the previous words

- syntax-based language modeling
 - Construct the syntactic tree from the top down
 - e.g. context free grammar
 - eventually at the leaves, generate the words

Pros/cons?
n-gram language modeling

I think today is a good day to be me

Google

Our friend the chain rule

Step 1: decompose the probability

\[P(\text{I think today is a good day to be me}) = \]

\[P(\text{I | <start>}) \times P(\text{think | I}) \times P(\text{today | I think}) \times P(\text{is | I think today}) \times P(\text{a | I think today is}) \times P(\text{good | I think today is a}) \times \ldots \]

How can we simplify these?

The n-gram approximation

Assume each word depends only on the previous n-1 words (e.g. trigram: three words total)

\[P(\text{is | I think today}) = P(\text{is | think today}) \]

\[P(\text{a | I think today is}) = P(\text{a | today is}) \]

\[P(\text{good | I think today is a}) = P(\text{good | is a}) \]

Estimating probabilities

- How do we find probabilities? \(P(\text{is | think today}) \)
- Get real text, and start counting (MLE)!

\[P(\text{is | think today}) = \frac{\text{count(\text{think today is})}}{\text{count(\text{think today})}} \]
Estimating from a corpus

Corpus of sentences
(e.g. gigaword corpus)

\[\text{n-gram language model} \]

\[\text{count all of the trigrams} \]

\[\text{why do we need} \]
\[\text{and} \]
\[\text{why do we need} \]
\[\text{and} \]
\[\text{and} \]

Estimating from a corpus

I am a happy Pomona College student .

\[\text{count all of the trigrams} \]

\[\text{p}(c|a,b) = \frac{\text{count}(a,b,c)}{\text{count}(a,b)} \]

Estimating from a corpus

I am a happy Pomona College student .

\[\text{count all of the bigrams} \]
Estimating from a corpus

1. Go through all sentences and count trigrams and bigrams
 - Usually you store these in some kind of data structure

2. Now, go through all of the trigrams and use the count and the bigram count to calculate MLE probabilities
 - Do we need to worry about divide by zero?

Applying a model

- Given a new sentence, we can apply the model

\[
\frac{p(\text{Pomona College students are the best .})}{p(\text{Pomona | <start> <start>}) \times p(\text{College | <start> Pomona}) \times p(\text{students | Pomona College}) \times \ldots \times p(\text{<end> | . <end>})}
\]

Some examples

Generating examples

- We can also use a trained model to generate a random sentence
- Ideas?

We have a distribution over all possible starting words

Draw one from this distribution

- p(A | <start> <start>)
- p(Apples | <start> <start>)
- p(| <start> <start>)
- p(The | <start> <start>)
- Zebra | <start> <start>)
Generating examples

- Unigram
 are were that éræs malel naturally built describes jazz territory heteromyids
 film tenor prime live founding must on was feet negro legal gate in an beside .
 provincial son ; stephenson simply spaces stretched performance double-entry
grove replacing station across to burmns . repairing éræs capital about double
reached omellos el time believed what hotels parameter jurisprudence wards
syndrome to éræs profanity is administrators éræs offices hilarous
institutionalized remains writer royalty client , éræs tyson , and objective .
instructions seem timekeeper has éræs valley éræs " magnitudes for love an éræs
from clifiklater , , , , éræs is belongs fame they the
corrected , , an in pressure %NUMBER% %NUMBER% her flavored éræs derogatory is von
macedon indirectly of crop duty leam earthbound éræs éræs dancing similarity
éræs named éræs berkely . , off-scale overtime , each manifold stripes dlnu
traffic ascertic and at alpha popularity town

- Bigrams
 the wikipedia county , mexico .
maurice ravel . it is require that is sparta , where functions . most
widely admired .
hologens chamiall cast jason against test site .

- Trigrams
 is widespread in north africa in june %NUMBER% %NUMBER% units were built by
 with .
 jewish video spiritual are considered irad , this season was an extratropical cyclone .
 the british railways ’ s strong and a spot .
We can train a language model on some data. How can we tell how well we're doing?

- For example:
 - Bigrams vs. trigrams
 - 100K sentence corpus vs. 100M
 - ...

A very good option: extrinsic evaluation.

- If you're going to be using it for machine translation, build a system with each language model and compare the two based on their approach for machine translation.

- Sometimes we don't know the application.
- Can be time consuming.

Common NLP/machine learning/AI approach:

- All sentences
 - Training sentences
 - Testing sentences

Test sentences

n-gram language model

Ideas?
Evaluation

- A good model should do a good job of predicting actual sentences

```
model 1
```

```
model 2
```

Perplexity

- View the problem as trying to predict the test corpus one word at a time in sequence
- A perfect model would always know give the next work probability 1

```
I like to eat banana peels.
```

Perplexity

- Perplexity is the average per-word probability

\[
\sqrt[n]{\prod_{i=1}^{n} P(w_i | w_{1..i-1})}
\]

- Sometimes is also written as

\[
\sqrt[n]{\prod_{i=1}^{n} P(w_i | w_{1..i-1})} = \frac{\sum_{i=1}^{n} \log P(w_i | w_{1..i-1})}{n}
\]

Another view of perplexity

- Weighted average branching factor
 - number of possible next words that can follow a word or phrase
 - measure of the complexity/uncertainty of text (as viewed from the language models perspective)
Smoothing

What if our test set contains the following sentence, but one of the trigrams never occurred in our training data?

\[P(I \text{ think today is a good day to be me}) = P(I|<\text{start}>}<\text{start}>x \]
\[P(\text{think}|<\text{start}>x) \]
\[P(\text{today}|\text{think}x) \quad \text{if any of these has never been seen before, prob } = 0! \]
\[P(\text{is}|\text{think today})x \]
\[P(\text{is}|\text{think today})x \]
\[P(\text{good}|\text{is a})x \]
\[\ldots \]

A better approach

- \(p(z|x) = ? \)
- Suppose our training data includes
 - \(x \ y \ a \ldots \)
 - \(x \ y \ d \ldots \)
 - \(x \ y \ d \ldots \)
 - but never: \(x \ y \ z \)
- We would conclude
 - \(p(a|x \ y) = 1/3? \)
 - \(p(d|x \ y) = 2/3? \)
 - \(p(z|x \ y) = 0/3? \)

- Is this ok?
- Intuitively, how should we fix these?

Smoothing the estimates

- **Basic idea:**
 - \(p(a|x \ y) = 1/3? \) reduce
 - \(p(d|x \ y) = 2/3? \) reduce
 - \(p(z|x \ y) = 0/3? \) increase

- **Discount** the positive counts somewhat
- **Reallocate** that probability to the zeroes

- **Remember,** it needs to stay a probability distribution

Other situations

- \(p(z|x \ y) = ? \)
- Suppose our training data includes
 - \(x \ y \ a \ldots \) (100 times)
 - \(x \ y \ d \ldots \) (100 times)
 - \(x \ y \ d \ldots \) (100 times)
 - but never: \(x \ y \ z \)
- Suppose our training data includes
 - \(x \ y \ a \ldots \)
 - \(x \ y \ d \ldots \)
 - \(x \ y \ d \ldots \)
 - \(x \ y \ldots \) (300 times)
 - but never: \(x \ y \ z \)

Is this the same situation as before?
Smoothing the estimates

- Should we conclude $p(a \mid xy) = 1/3$? **reduce**
- $p(d \mid xy) = 2/3$? **reduce**
- $p(z \mid xy) = 0/3$? **increase**

- Redoing the estimate is particularly important if:
 - the denominator is small …
 - $1/3$ probably too high, $100/300$ probably about right
 - numerator is small …
 - $1/300$ probably too high, $100/300$ probably about right

Add-one (Laplacian) smoothing

300 observations instead of 3 – better data, less smoothing

<table>
<thead>
<tr>
<th></th>
<th>xy</th>
<th>1</th>
<th>1/3</th>
<th>2</th>
<th>2/29</th>
</tr>
</thead>
<tbody>
<tr>
<td>xya</td>
<td>100</td>
<td>100/300</td>
<td>101</td>
<td>101/326</td>
<td></td>
</tr>
<tr>
<td>xyb</td>
<td>0</td>
<td>0/300</td>
<td>1</td>
<td>1/326</td>
<td></td>
</tr>
<tr>
<td>xyc</td>
<td>0</td>
<td>0/300</td>
<td>1</td>
<td>1/326</td>
<td></td>
</tr>
<tr>
<td>xyd</td>
<td>200</td>
<td>200/300</td>
<td>201</td>
<td>201/326</td>
<td></td>
</tr>
<tr>
<td>xye</td>
<td>0</td>
<td>0/300</td>
<td>1</td>
<td>1/326</td>
<td></td>
</tr>
<tr>
<td>xyz</td>
<td>0</td>
<td>0/300</td>
<td>1</td>
<td>1/326</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>300</td>
<td>300/300</td>
<td>326</td>
<td>326/326</td>
<td></td>
</tr>
</tbody>
</table>

Add-one (Laplacian) smoothing

What happens if we’re now considering 20,000 word types?

<table>
<thead>
<tr>
<th></th>
<th>xy</th>
<th>1</th>
<th>1/3</th>
<th>2</th>
<th>2/29</th>
</tr>
</thead>
<tbody>
<tr>
<td>xya</td>
<td>1</td>
<td>1/3</td>
<td>2</td>
<td>2/29</td>
<td></td>
</tr>
<tr>
<td>xyb</td>
<td>0</td>
<td>0/3</td>
<td>1</td>
<td>1/29</td>
<td></td>
</tr>
<tr>
<td>xyc</td>
<td>0</td>
<td>0/3</td>
<td>1</td>
<td>1/29</td>
<td></td>
</tr>
<tr>
<td>xyd</td>
<td>2</td>
<td>2/3</td>
<td>3</td>
<td>3/29</td>
<td></td>
</tr>
<tr>
<td>xye</td>
<td>0</td>
<td>0/3</td>
<td>1</td>
<td>1/29</td>
<td></td>
</tr>
<tr>
<td>xyz</td>
<td>0</td>
<td>0/3</td>
<td>1</td>
<td>1/29</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>3</td>
<td>3/3</td>
<td>29</td>
<td>29/29</td>
<td></td>
</tr>
</tbody>
</table>
Add-one (Laplacian) smoothing

20000 word types, not 26 letters

<table>
<thead>
<tr>
<th>event</th>
<th>count</th>
<th>probability</th>
<th>smoothing probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>see the abacus</td>
<td>1</td>
<td>1/3</td>
<td>2/20003</td>
</tr>
<tr>
<td>see the abbot</td>
<td>0</td>
<td>0/3</td>
<td>1/20003</td>
</tr>
<tr>
<td>see the abduct</td>
<td>0</td>
<td>0/3</td>
<td>1/20003</td>
</tr>
<tr>
<td>see the above</td>
<td>2</td>
<td>2/3</td>
<td>3/20003</td>
</tr>
<tr>
<td>see the Abram</td>
<td>0</td>
<td>0/3</td>
<td>1/20003</td>
</tr>
<tr>
<td>see the zygote</td>
<td>0</td>
<td>0/3</td>
<td>1/20003</td>
</tr>
<tr>
<td>Total</td>
<td>3</td>
<td>3/3</td>
<td>20003/20003</td>
</tr>
</tbody>
</table>

Any problem with this?

Add-lambda smoothing

A large dictionary makes novel events too probable.
Instead of adding 1 to all counts, add $\lambda = 0.01$?
This gives much less probability to novel events

<table>
<thead>
<tr>
<th>event</th>
<th>count</th>
<th>probability</th>
<th>smoothing probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>see the abacus</td>
<td>1</td>
<td>1/3</td>
<td>1.01/203</td>
</tr>
<tr>
<td>see the abbot</td>
<td>0</td>
<td>0/3</td>
<td>0.01/203</td>
</tr>
<tr>
<td>see the abduct</td>
<td>0</td>
<td>0/3</td>
<td>0.01/203</td>
</tr>
<tr>
<td>see the above</td>
<td>2</td>
<td>2/3</td>
<td>2.01/203</td>
</tr>
<tr>
<td>see the Abram</td>
<td>0</td>
<td>0/3</td>
<td>0.01/203</td>
</tr>
<tr>
<td>see the zygote</td>
<td>0</td>
<td>0/3</td>
<td>0.01/203</td>
</tr>
<tr>
<td>Total</td>
<td>3</td>
<td>3/3</td>
<td>203</td>
</tr>
</tbody>
</table>

The general smoothing problem

<table>
<thead>
<tr>
<th>event</th>
<th>count</th>
<th>probability</th>
<th>smoothing probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>see the abacus</td>
<td>1</td>
<td>1/3</td>
<td>?</td>
</tr>
<tr>
<td>see the abbot</td>
<td>0</td>
<td>0/3</td>
<td>?</td>
</tr>
<tr>
<td>see the abduct</td>
<td>0</td>
<td>0/3</td>
<td>?</td>
</tr>
<tr>
<td>see the above</td>
<td>2</td>
<td>2/3</td>
<td>?</td>
</tr>
<tr>
<td>see the Abram</td>
<td>0</td>
<td>0/3</td>
<td>?</td>
</tr>
<tr>
<td>see the zygote</td>
<td>0</td>
<td>0/3</td>
<td>?</td>
</tr>
<tr>
<td>Total</td>
<td>3</td>
<td>3/3</td>
<td>?</td>
</tr>
</tbody>
</table>
Add-lambda smoothing

How should we pick lambda?

<table>
<thead>
<tr>
<th>Category</th>
<th>Count</th>
<th>Fraction</th>
<th>Lambda</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>see the abacus</td>
<td>1</td>
<td>1/3</td>
<td>1.01</td>
<td>1.01/203</td>
</tr>
<tr>
<td>see the abbot</td>
<td>0</td>
<td>0/3</td>
<td>0.01</td>
<td>0.01/203</td>
</tr>
<tr>
<td>see the abduct</td>
<td>0</td>
<td>0/3</td>
<td>0.01</td>
<td>0.01/203</td>
</tr>
<tr>
<td>see the above</td>
<td>2</td>
<td>2/3</td>
<td>2.01</td>
<td>2.01/203</td>
</tr>
<tr>
<td>see the Abram</td>
<td>0</td>
<td>0/3</td>
<td>0.01</td>
<td>0.01/203</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td>0.01</td>
<td>0.01/203</td>
</tr>
<tr>
<td>see the zygote</td>
<td>0</td>
<td>0/3</td>
<td>0.01</td>
<td>0.01/203</td>
</tr>
<tr>
<td>Total</td>
<td>3</td>
<td>3/3</td>
<td>0.01</td>
<td>0.01/203</td>
</tr>
</tbody>
</table>

Setting smoothing parameters

- Idea 1: try many λ values & report the one that gets best results?

<table>
<thead>
<tr>
<th>Training</th>
<th>Test</th>
</tr>
</thead>
</table>

Is this fair/appropriate?

Correct experimentation

- General rules:
 - Test data should only be used for evaluation
 - No peeking! Only use it for your final results.
 - Never skew anything in your favor

- Other ideas?
Concerns

- 20% may not be enough to reliably determine \(\lambda \).
- We're maximizing lambda for only 80% of our data (will not be the same as the optimal for 100%)
- We're losing 20% of our data for calculating counts

Ideas?

Cross-validation (aka “jackknifing”)

- If 20% too little: try 5 training/test splits as below
 - Pick \(\lambda \) that gets best average performance

 ![Cross-validation Diagram]

 - This tests on all 100% (in turn), so we can more reliably assess \(\lambda \).
 - Unfortunately, still picks a \(\lambda \) that does well on 80% training.

N-fold Cross-Validation and “Leave One Out”

- Test each sentence with smoothed model from other N-1 sentences
 - Still tests on all 100% (in turn), so we can reliably assess \(\lambda \).
 - Tests if \(\lambda \) is good for smoothing \((N-1)/N = 100\%\) of training data, which matches our actual test conditions
 - Surprisingly fast: why?
 - Usually easy to change model by adding/subtracting 1 sentence’s counts