

Quiz #2

- Out of 30 points
- □ High: 28.75
- Ave: 23
- Will drop lowest quiz
- I do not grade based on absolutes

Class feedback

- Thanks!
- Specific comments:
 - "Less/no Java :)"
 - <u>http://www.langpop.com/</u>
 - http://www.devtopics.com/most-popular-programminglanguages/
 - $\hfill \ensuremath{\square}$ "tell us to get up more often and stretch and high-five"
 - "Drop lowest quiz grade"
 - "more labs"

	Class presentations					
			Response	Response		
			Percent	Count		
-		Machine translation	44.4%	8		
		Word sense disambiguation	38.9%	7		
-		Question answering	66.7%	12		
-		Information retrieval (search)	61.1%	11		
		Speech recognition	33.3%	6		
-		Information extraction	83.3%	15		
-		Summarization	50.0%	9		
		Text simplification	22.2%	4		
		Coreference resolution	27.8%	5		
		Discourse analysis	22.2%	4		
		Topic segmentation	16.7%	3		
		Other (please specify) Show Responses	5.6%	1		

Class presentations

- Presentations done in pairs (and one triplet)
- □ 25 minutes for presentation 10 min. for Q+A
- □ In the week following your presentation, come by and see me for 5-10 min. for feedback
- 5% of your grade is based on your presentation
- I will also be looking for improvement from this presentation to your final project presentation
- If you are not presenting, you should spend at least 30 min. on each paper reading it before class

Class presentations

- □ 7 of you still haven't e-mailed me preferences!
- If you e-mail me by 5pm today, I'll take those into account
- I will post the assignments later today
 I'll try and give everyone their first choice

Other Admin

- Assignment 5 (last assignment!) will be posted soon and due next Friday (4/1)
- I will post final project deadlines, specifications, etc. soon
 Groups 2-3 (possibly 4)
 - Groups 2-3 (possibly 4)
 - ~4 weeks of actual coding/writing
 Start thinking about final projects

 - Project proposals will be due ~ April 4
- How many of you are seniors?
 - \blacksquare I will have to shift some things in the schedule since you're grades are due early

Text Similarity
A common question in NLP is how similar are texts
score: sim(,) = ?
rank: ? How could these be useful? Applications?

Text similarity:	applications
Text clustering	

- There are many different notions of similarity depending on the domain and the application
- Today, we'll look at some different tools
- There is no one single tool that works in all domains

The basics: text overlap

- Texts that have overlapping words are more similar
- A: When the defendant and his lawyer walked into the court, some of the victim supporters turned their backs to him.
- B: When the defendant walked into the courthouse with his attorney, the crowd truned their backs on him.

- □ Idea 1: number of overlapping words
- A: When the defendant and his lawyer walked into the court, some of the victim supporters turned their backs to him.
- B: When the defendant walked into the courthouse with his attorney, the crowd truned their backs on him.

sim(T1, T2) = 11

problems?

Word overlap problems

- Doesn't take into word order
- Related: doesn't reward longer overlapping sequences
- A: defendant his the When lawyer into walked backs him the court, of supporters and some the victim turned their backs him to.
- B: When the defendant walked into the courthouse with his attorney, the crowd truned their backs on him.

sim(T1, T2) = 11

Word overlap problems

- Doesn't take into account length
- A: When the defendant and his lawyer walked into the court, some of the victim supporters turned their backs to him.
- B: When the defendant walked into the courthouse with his attorney, the crowd truned their backs on him. I ate a large banana at work today and thought it was great!

sim(T1,T2) = 11

Word overlap problems

Doesn't take into account synonyms

- A: When the defendant and his lawyer walked into the court, some of the victim supporters turned their backs to him.
- B: When the defendant walked into the courthouse with his attorney, the crowd truned their backs on him.

sim(T1,T2) = 11

Word overlap problems

Doesn't take into account spelling mistakes

- A: When the defendant and his lawyer walked into the court, some of the victim supporters turned their backs to him.
- B: When the defendant walked into the courthouse with his attorney, the crowd truned their backs on him. I ate a large banana at work today and thought it was great!

sim(T1, T2) = 11

Word overlap problems

Treats all words the same

- A: When the defendant and his lawyer walked into the court, some of the victim supporters turned their backs to him.
- B: When the defendant walked into the courthouse with his attorney, the crowd truned their backs on him.

Word overlap problems

May not handle frequency properly

- A: When the defendant and his lawyer walked into the court, some of the victim supporters turned their backs to him. I ate a *banana* and then another *banana* and it was good!
- B: When the defendant walked into the courthouse with his attorney, the crowd truned their backs on him. I ate a large *banana* at work today and thought it was great!

Word overlap: sets

- What is the overlap, using sets?
- \square $|A \land B|$ the size of the intersection
- $\hfill\square$ How can we incorporate length/size into this measure?

Word overlap: sets

- What is the overlap, using sets?
 |A \ B| the size of the intersection
- □ How can we incorporate length/size into this measure?
- Jaccard index (Jaccard similarity coefficient)

$$J(A,B) = \frac{|A \cap B|}{|A \cup B|}$$

Dice's coefficient

$$Dice(A,B) = \frac{2 |A \cap B|}{|A| + |B|}$$

- 1

- 1

Word overlap: sets

$$J(A,B) = \frac{|A \cap B|}{|A \cup B|} \qquad Dice(A,B) = \frac{2 |A \cap B|}{|A| + |B|}$$
How are these related?
Hint: break them down in terms of

$$|A - B| \qquad \text{words in A but not B}$$

$$|B - A| \qquad \text{words in B but not A}$$

$$|A \cap B| \qquad \text{words in both A and B}$$

9

Cosine similarity with 3 documents						
Cosine similarity with 5 docoments						
How similar are the novels:	term	SαS	ΡαΡ	WH		
SaS: Sense and Sensibility	affection	115	58	20		
PaP: Pride and Prejudice,	jealous	10	7	11		
and	gossip	2	0	6		
WH: Wuthering Heights?						
Term frequencies (counts)						

Our problems

- □ Which of these have we addressed?
 - word order
 - length
 - synonym
 - spelling mistakes
 - word importance
 - word frequency

Our problems

- $\hfill\square$ Which of these have we addressed?
 - word order
 - lengthsynonym
 - spelling mistakes
 - word importance
 - word frequency

Word overlap problems

Treats all words the same

- A: When the defendant and his lawyer walked into the court, some of the victim supporters turned their backs to him.
- B: When the defendant walked into the courthouse with his attorney, the crowd truned their backs on him.

Word importance

 $\hfill\square$ Include a weight for each word/feature

	4		
	a ₁ : When	1	w ₁
	a ₂ : the	2	w ₂
	a ₃ : defendant	1	w ₃
	a₄: and	1	w ₄
	a ₅ : courthouse	0	w ₅
В			
	b ₁ : When	1	w 1
	b _o ; the	2	w ₂
	b ₃ : defendant	1	w3
	b ₄ : and	0	w ₄
	b ₅ : courthouse	1	w ₅

Document frequency

- <u>document frequency</u> (df) is one measure of word importance
- Terms that occur in many documents are weighted less, since overlapping with these terms is very likely
 In the extreme case, take a word like the that occurs in
 - EVERY document
- Terms that occur in only a few documents are weighted more

Document vs. overall frequency

- The overall frequency of a word is the number of occurrences in a dataset, counting multiple occurrences
- Example:

Word	Overall frequency	Document frequency			
insurance	10440	3997			
try	10422	8760			
Which word is a better search term (and should get a higher weight)?					

	1 , 3					
Wor	d Collection f	frequency	Document frequency			
insurance		10440	3997			
try		10422	8760			
 weight and document frequency are inversely related higher document frequency should have lower weight and vice versa document frequency is unbounded 						
documen	document frequency will change depending on the size of the data set (i.e. the number of documents)					

é a vez	46	:-16				
calpurnia		1	t			
animal		100				
sunday		1,000				
fly		10,000				
under		100,000				
the		1,000,000				

idf example, suppose N= 1 million						
torm	J.C.	1.15				
calpurnia	ur _t 1	6				
animal	100	4				
sunday	1,000	3				
fly	10,000	2				
under	100,000	1				
the	1,000,000	0				
There is one idf value/weight for each word						

calpurnia	1	
animal	100	
sunday	1,000	
fly	10,000	
under	100,000	
the	1,000,000	

idf example suppose $N=1$ million						
		. 16				
term	ar _t					
calpurnia	1	1,000,000				
animal	100	10,000				
sunday	1,000	1,000				
fly	10,000	100				
under	100,000	10				
the	1,000,000	1				

TF-IDF

- One of the most common weighting schemes
- □ TF = term frequency
- \Box IDF = inverse document frequency

$$\mathbf{a}'_i = \mathbf{a}_i \times \log N / \mathrm{df}_i$$

word importance weight

We can then use this with any of our similarity measures!