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NATURAL LANGUAGE LEARNING: 
MAXIMUM ENTROPY 

David Kauchak 
CS159, Spring 2011 

Some material derived 
from Jason Eisner 

Admin 

  Assignment 4 
  Assignment 3 grades back soon 

  Next Monday’s class in the intro lab(Edmunds 229) 
  Quiz #2 next Wednesday 

Linear classifier 

  A linear classifier predicts the label based on a weighted, linear combination of 
the features 

  For two classes, a linear classifier can be viewed as a plane (hyperplane) in the 
feature space 

€ 

prediction = w0 + w1 f1 + w2 f2 + ...+ wm fm

f1 

f2 
f3 

The Naive Bayes Classifier 

Conditional Independence Assumption: features are 
independent of each other given the class: 

  

€ 

label = argmax
l∈Labels

P( f1 | l)P( f2 | l)… p( fn | l)P(l)

spam 

buy 
viagra the now 

enlargement assume binary 
features for now 

Learn parameters by maximum likelihood estimation (i.e. maximize 
likelihood of the training data) 
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NB is a linear classifier 

  

€ 

label = argmax
l∈Labels

P( f1 | l)P( f2 | l)… p( fn | l)P(l)

  

€ 

= argmax
l∈Labels

log(P( f1 | l)P( f2 | l)… p( fn | l)P(l))

  

€ 

= argmax
l∈Labels

log(P( f1 | l)) + log(P( f2 | l)) +…+ log(p( fn | l)) + log(P(l))

€ 

= argmax
l∈Labels

f1 log(P( f1 | l)) + f 1 log(1− P( f1 | l))+ ...+ log(P(l))

w0 f1w1 f2w2 

Linear regression 

€ 

h( f ) = w0 + w1 f1 + w2 f2 + ...+ wm fm

weights real value 

€ 

error(h) = (yi − (w0 + w1 f1 + w2 f2 + ...+ wm fm ))
2

i=1

n
∑

Learn weights by minimizing the square error on the training data 

Predict the response based on a weighted, linear combination of 
the features 

3 views of logistic regression 

€ 

log P(1 | x1,x2,...,xm )
1− P(1 | x1,x2,...,xm )

= w0 + w1x2 + w2x2 + ...+ wmxm

€ 

P(1 | x1,x2,...,xm ) =
1

1+ e−(w0 +w1x2 +w2x2 +...+wmxm )

… 

… 
€ 

P(1 | x1,x2,...,xm ) =
ew0 +w1x2 +w2x2 +...+wmxm

1+ ew0 +w1x2 +w2x2 +...+wmxm

linear classifier 

exponential model 
(log-linear model) 

logistic 

Logistic regression 

  Find the best fit of the data based on a logistic 
function 
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Training logistic regression models 

  How should we learn the parameters for logistic 
regression (i.e. the w’s)? 

€ 

log P(1 | x1,x2,...,xm )
1− P(1 | x1,x2,...,xm )

= w0 + w1x2 + w2x2 + ...+ wmxm

€ 

P(1 | x1,x2,...,xm ) =
1

1+ e−(w0 +w1x2 +w2x2 +...+wmxm )

parameters 

Training logistic regression models 

  Idea 1: minimize the squared error (like linear 
regression) 
 Any problems? 

 We don’t know what the actual probability values are! 
€ 

log P(1 | x1,x2,...,xm )
1− P(1 | x1,x2,...,xm )

= w0 + w1x2 + w2x2 + ...+ wmxm

Training logistic regression models 

  Idea 2: maximum likelihood training 

€ 

MLE(data) = argmax
θ

pθ (data)

€ 

= argmaxw 
pw (labeli | f i)

i=1

n

∑

… 

Unfortunately, no closed form solution. € 

= argmaxw 
log pw (labeli | f i)

i=1

n

∑ 1. plug in our logistic 
equation 
2. take partial 
derivatives and solve 

Convex functions 

  Convex functions look something like: 

  What are some nice properties about convex functions? 

  How can we find the minimum/maximum of a convex function? 
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Finding the minimum 

You’re blindfolded, but you can see out of the bottom of the 
blindfold to the ground right by your feet.  I drop you off 
somewhere and tell you that you’re in a convex shaped valley 
and escape is at the bottom/minimum.  How do you get out? 

One approach: gradient descent 

  Partial derivatives give us the slope in that dimension 

  Approach: 
  pick a starting point (w) 
  repeat until likelihood can’t increase in any dimension: 

  pick a dimension 
  move a small amount in that dimension towards increasing likelihood 

(using the derivative) 

Gradient descent 

  pick a starting point (w) 
  repeat until loss doesn’t decrease in all dimensions: 

  pick a dimension 
  move a small amount in that dimension towards decreasing loss (using 

the derivative) 

€ 

wi = wi −α
d
dwi

error(w)

learning rate (how much we want to 
move in the error direction) 

Solving convex functions 

  Gradient descent is just one approach 
  A whole field called convex optimization 

 http://www.stanford.edu/~boyd/cvxbook/ 
  Lots of well known methods 

 Conjugate gradient 
 Generalized Iterative Scaling (GIS) 
  Improved Iterative Scaling (IIS) 
 Limited-memory quasi-Newton (L-BFGS) 

  The key: if we get an error function that is convex, 
we can minimize/maximize it (eventually) 
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Another thought experiment 

What is a 100,000-dimensional space like? 

You’re a 1-D creature, and you decide 
to buy a 2-unit apartment 

2 rooms (very, skinny rooms) 

Another thought experiment 

What is a 100,000-dimensional space like? 

Your job’s going well and you’re 
making good money.  You upgrade to 
a 2-D apartment with 2-units per 
dimension 

4 rooms (very, flat rooms) 

Another thought experiment 

What is a 100,000-dimensional space like? 

You get promoted again and start 
having kids and decide to upgrade to 
another dimension. 

Each time you add a dimension, 
the amount of space you have to 
work with goes up exponentially 

8 rooms (very, normal rooms) 

Another thought experiment 

What is a 100,000-dimensional space like? 

Larry Page steps down as CEO of 
google and they ask you if you’d like 
the job.  You decide to upgrade to a 
100,000 dimensional apartment. 

How much room do you have? 
Can you have a big party? 

2100,000 rooms (it’s very quiet and lonely…) = ~1030 rooms per 
person if you invited everyone on the planet 
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The challenge 

  Because logistic regression has 
fewer constraints (than, say NB) 
it has a lot more options 

  We’re trying to find 100,000 w 
values (or a point in a 100,000 
dimensional space) 

  It’s easy for logistic regression to 
fit to nuances with the data: 
overfitting 

Overfitting 

Preventing overfitting 

€ 

log P(1 | x1,x2,...,xm )
1− P(1 | x1,x2,...,xm )

= w0 + w1x2 + w2x2 + ...+ wmxm

We want to avoid any one features have too much weight 

€ 

MLE(data) = argmaxw 
log pw (y | f )

i=1

n

∑ normal MLE 

ideas? 

Preventing overfitting 

€ 

log P(1 | x1,x2,...,xm )
1− P(1 | x1,x2,...,xm )

= w0 + w1x2 + w2x2 + ...+ wmxm

We want to avoid any one features have too much weight 

€ 

MLE(data) = argmaxw 
log pw (y | f )

i=1

n

∑

€ 

MLE(data) = argmaxw 
log pw (y | f )

i=1

n

∑ −α w j
2

j =1

m

∑

normal MLE 

regularized MLE 
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Preventing overfitting: regularization 

€ 

MLE(data) = argmaxw 
log pw (y | f )

i=1

n

∑ −α w j
2

j =1

m

∑ regularized MLE 

penalize large weights 
encourage smaller weights 

What affect will this have on the learned weights assuming 
a positive α? 

-  still a convex problem! 
-  equivalent to assuming your wj are distributed from a 
Gaussian with mean 0 

NB vs. Logistic regression 

  NB and logistic regression look very similar 
 both are probabilistic models 
 both are linear 
 both learn parameters that maximize the log-likelihood 

of the training data 

  How are they different? 

NB vs. Logistic regression 

NB Logistic regression 

€ 

f1 log(P( f1 | l))+ f 1 log(1− P( f1 | l)) + ...+ log(P(l))

Estimates the weights under the 
strict assumption that the features 
are independent 

Naïve bayes is called a generative 
model; it models the joint 
distribution p(features, labels) 

If NB assumption doesn’t hold, can 
adjust the weights to compensate 
for this 

Logistic regression is called a 
discriminative model; it models the 
conditional distribution directly 
 p(labels | features) 

€ 

ew0 +w1x2 +w2x2 +...+wmxm

1+ ew0 +w1x2 +w2x2 +...+wmxm

Some historical perspective 

http://www.reputation.com/blog/2010/02/17/privacy-a-historical-perspective/ 
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Old school optimization 

  Possible parses (or whatever) have scores 
  Pick the one with the best score 
  How do you define the score? 

 Completely ad hoc! 
  Throw anything you want into the mix 
 Add a bonus for this, a penalty for that, etc. 
  Think about state evaluation function for Mancala… 

Old school optimization 

  “Learning” 

 adjust bonuses and penalties by hand to improve 
performance.  

  Total kludge, but totally flexible too … 
 Can throw in any intuitions you might have 

  But we’re purists… we only use probabilities! 

New “revolution”? 

  Probabilities! 

New “revolution”? 

  Probabilities! Exposé at 9 

Probabilistic Revolution 
Not Really a Revolution,  
Critics Say 

Log-probabilities no more  
than scores in disguise 
“We’re just adding stuff up like the old corrupt regime 
did,” admits spokesperson 
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Probabilists   Rally   Behind    Paradigm 

“.2, .4, .6, .8!  We’re not gonna take your bait!” 
1.  Can estimate our parameters automatically  

  e.g., log p(t7 | t5, t6)               (trigram tag probability) 
  from supervised or unsupervised data 

2.  Our results are more meaningful 
  Can use probabilities to place bets, quantify risk 
  e.g., how sure are we that this is the correct parse? 

3.  Our results can be meaningfully combined ⇒ modularity!  
  Multiply indep. conditional probs – normalized, unlike scores 
  p(English text) * p(English phonemes | English text) * p(Jap. phonemes | 

English phonemes) * p(Jap. text | Jap. phonemes) 
  p(semantics) * p(syntax | semantics) * p(morphology | syntax) * p

(phonology | morphology) * p(sounds | phonology) 

83% of 

^ 
Probabilists Regret Being Bound by Principle 

  Ad-hoc approach does have one advantage 
  Consider e.g. Naïve Bayes for spam categorization: 

  Buy this supercalifragilistic Ginsu knife set 
for only $39 today … 

  Some useful features: 
  Contains Buy  
  Contains supercalifragilistic  
  Contains a dollar amount under $100  
  Contains an imperative sentence 
  Reading level = 8th grade 
  Mentions money (use word classes and/or regexp to detect this) 

Any problem with these features for NB? 

Probabilists Regret Being Bound by Principle 

  Naïve Bayes 
  Contains a dollar amount under $100  
  Mentions money (use word classes and/or regexp to detect this) 

Buy this supercalifragilistic Ginsu knife set for 
only $39 today … 

Spam not-Spam 

< $100 0.5 0.02 

Money amount 0.9 0.1 

How likely is it to see both features in either 
class using NB?  Is this right? 

Probabilists Regret Being Bound by Principle 

  Naïve Bayes 
  Contains a dollar amount under $100  
  Mentions money (use word classes and/or regexp to detect this) 

Buy this supercalifragilistic Ginsu knife set for 
only $39 today … 

Spam not-Spam 

< $100 0.5 0.02 

Money amount 0.9 0.1 

0.5*0.9=0.45 0.02*0.1=0.002 

Overestimates!  The problem is that the features are 
not independent 
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NB vs. Logistic regression 

  Logistic regression allows us to put in features that 
overlap and adjust the probabilities accordingly 

  Which to use? 
 NB is better for small data sets: strong model 

assumptions keep the model from overfitting 

 Logistic regression is better for larger data sets: can 
exploit the fact that NB assumption is rarely true 

NB      vs. Logistic regression 

NB      vs. Logistic regression Logistic regression with more classes 

  NB works on multiple classes 

  Logistic regression only works on two classes 

  Idea: something like logistic regression, but with more classes 
  Like NB, one model per each class 

  The model is a weight vector 

€ 

P(class1 | x1,x2,...,xm ) = ew1,0 +w1,1x2 +w1,2x2 +...+w1,mxm

€ 

P(class2 | x1,x2,...,xm ) = ew2,0 +w2,1x2 +w2,2x2 +...+w2,mxm

€ 

P(class3 | x1,x2,...,xm ) = ew3,0 +w3,1x2 +w3,2x2 +...+w3,mxm

… anything wrong with this? 
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Challenge: probabilistic modeling 

€ 

P(class1 | x1,x2,...,xm ) = ew1,0 +w1,1x2 +w1,2x2 +...+w1,mxm

€ 

P(class2 | x1,x2,...,xm ) = ew2,0 +w2,1x2 +w2,2x2 +...+w2,mxm

€ 

P(class3 | x1,x2,...,xm ) = ew3,0 +w3,1x2 +w3,2x2 +...+w3,mxm

… 

These are supposed to be probabilities! 

€ 

P(class1 | x1,x2,...,xm ) + P(class2 | x1,x2,...,xm ) + P(class3 | x1,x2,...,xm ) + ...≠1

Ideas? 

Maximum Entropy Modeling aka  
Multinomial Logistic Regression 

€ 

P(class1 | x1,x2,...,xm ) =
ew1,0 +w1,1x2 +w1,2x2 +...+w1,mxm

P(class1 | x1,x2,...,xm ) + P(class2 | x1,x2,...,xm ) + P(class3 | x1,x2,...,xm ) + ...

€ 

P(class1 | x1,x2,...,xm ) =
ew1,0 +w1,1x2 +w1,2x2 +...+w1,mxm

P(classi | x1,x2,...,xm )
i=1

|C |

∑

Normalize each class probability by the sum over all the classes 

€ 

=
ew1,0 +w1,1x2 +w1,2x2 +...+w1,mxm

ewi ,0 +wi ,1x2 +wi ,2x2 +...+wi ,mxm

i=1

|C |

∑
normalizing 
constant 

Log-linear model 

€ 

P(class1 | x1,x2,...,xm ) =
ew1,0 +w1,1x2 +w1,2x2 +...+w1,mxm

P(classi | x1,x2,...,xm )
i=1

|C |

∑

€ 

logP(class1 | x1,x2,...,xm ) = w1,0 + w1,1x2 + w1,2x2 + ...+ w1,mxm − log P(classi | x1,x2,...,xm )
i=1

|C |

∑
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

- still just a linear combination of feature weightings  
-  class specific features 

Training the model 

  Can still use maximum likelihood training 

  Use regularization 

  Plug into a convex optimization package 
  there are a few complications, but this is the basic idea 

€ 

MLE(data) = argmax
θ

log p(labeli | f i)
i=1

n

∑

€ 

MLE(data) = argmax
θ

log p(labeli | f i)
i=1

n

∑ −αR(θ)
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Maximum Entropy 

  Suppose there are 10 classes, A through J. 
  I don’t give you any other information. 
  Question: Given a new example m: what is your guess for p(C | m)? 

  Suppose I tell you that 55% of all examples are in class A. 
  Question: Now what is your guess for p(C | m)? 

  Suppose I also tell you that 10% of all examples contain Buy and 
80% of these are in class A or C. 

  Question: Now what is your guess for p(C | m),  
  if m contains Buy? 

Maximum Entropy 

A B C D E F G H I J 
prob 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

Maximum entropy principle: given the constraints, pick the 
probabilities as “equally as possible” 

Qualitatively 

Quantitatively 
Maximum entropy: given the constraints, pick the probabilities so as 
to maximize the entropy 

€ 

Entropy(model) = p(c)log p(c)
c
∑

Maximum Entropy 

A B C D E F G H I J 
prob 0.55 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 

Maximum entropy principle: given the constraints, pick the 
probabilities as “equally as possible” 

Qualitatively 

Quantitatively 
Maximum entropy: given the constraints, pick the probabilities so as 
to maximize the entropy 

€ 

Entropy(model) = p(c)log p(c)
c
∑

Maximum Entropy 

A B C D E F G H I J 
Buy .051 .0025 .029 .0025 .0025 .0025 .0025 .0025 .0025 .0025 

Other .499 .0446 .0446 .0446 .0446 .0446 .0446 .0446 .0446 .0446 

  Column A sums to 0.55   (“55% of all messages are in class A”) 
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Maximum Entropy 

A B C D E F G H I J 
Buy .051 .0025 .029 .0025 .0025 .0025 .0025 .0025 .0025 .0025 

Other .499 .0446 .0446 .0446 .0446 .0446 .0446 .0446 .0446 .0446 

  Column A sums to 0.55 
  Row Buy sums to 0.1   (“10% of all messages contain Buy”) 

Maximum Entropy 

A B C D E F G H I J 
Buy .051 .0025 .029 .0025 .0025 .0025 .0025 .0025 .0025 .0025 

Other .499 .0446 .0446 .0446 .0446 .0446 .0446 .0446 .0446 .0446 

  Column A sums to 0.55 
  Row Buy sums to 0.1 
  (Buy, A) and (Buy, C) cells sum to 0.08  (“80% of the 10%”) 

  Given these constraints, fill in cells “as equally as possible”: 
maximize the entropy  (related to cross-entropy, perplexity) 

Entropy = -.051 log .051 - .0025 log .0025 - .029 log .029 - … 
Largest if probabilities are evenly distributed 

Maximum Entropy 

A B C D E F G H I J 
Buy .051 .0025 .029 .0025 .0025 .0025 .0025 .0025 .0025 .0025 

Other .499 .0446 .0446 .0446 .0446 .0446 .0446 .0446 .0446 .0446 

  Column A sums to 0.55 
  Row Buy sums to 0.1 
  (Buy, A) and (Buy, C) cells sum to 0.08  (“80% of the 10%”) 

  Given these constraints, fill in cells “as equally as possible”: 
maximize the entropy 

  Now p(Buy, C) = .029  and  p(C | Buy) = .29 
  We got a compromise: p(C | Buy) < p(A | Buy) < .55 

Generalizing to More Features 

A B C D E F G H … 
Buy .051 .0025 .029 .0025 .0025 .0025 .0025 .0025 

Other .499 .0446 .0446 .0446 .0446 .0446 .0446 .0446 

<$100 
Other 
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What we just did 

  For each feature (“contains Buy”), see what fraction of 
training data has it 

  Many distributions p(c,m) would predict these fractions  
  Of these, pick distribution that has max entropy 

  Amazing Theorem: The maximum entropy model is the 
same as the maximum likelihood model! 
  If we calculate the maximum likelihood parameters, we’re also 

calculating the maximum entropy model 

What to take home… 

  Many learning approaches 
  Bayesian approaches (of which NB is just one) 
  Linear regression 
  Logistic regression 
  Maximum Entropy (multinomial logistic regression) 
  SVMs 
  Decision trees 
  … 

  Different models have different strengths/weaknesses/uses 
  Understand what the model is doing 
  Understand what assumptions the model is making 
  Pick the model that makes the most sense for your problem/data 

  Feature selection is important 

Articles discussion 

  http://www.nytimes.com/2010/12/23/business/
23trading.html 

  What are some challenges? 
  Will it work? 
  Any concerns/problems with using this type of 

technology? 
  Gaming the system? 


