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NATURAL LANGUAGE LEARNING: 
MAXIMUM ENTROPY 

David Kauchak 
CS159, Spring 2011 

Some material derived 
from Jason Eisner 

Admin 

  Assignment 4 
  Assignment 3 grades back soon 

  Next Monday’s class in the intro lab(Edmunds 229) 
  Quiz #2 next Wednesday 

Linear classifier 

  A linear classifier predicts the label based on a weighted, linear combination of 
the features 

  For two classes, a linear classifier can be viewed as a plane (hyperplane) in the 
feature space 

€ 

prediction = w0 + w1 f1 + w2 f2 + ...+ wm fm

f1 

f2 
f3 

The Naive Bayes Classifier 

Conditional Independence Assumption: features are 
independent of each other given the class: 

  

€ 

label = argmax
l∈Labels

P( f1 | l)P( f2 | l)… p( fn | l)P(l)

spam 

buy 
viagra the now 

enlargement assume binary 
features for now 

Learn parameters by maximum likelihood estimation (i.e. maximize 
likelihood of the training data) 
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NB is a linear classifier 

  

€ 

label = argmax
l∈Labels

P( f1 | l)P( f2 | l)… p( fn | l)P(l)

  

€ 

= argmax
l∈Labels

log(P( f1 | l)P( f2 | l)… p( fn | l)P(l))

  

€ 

= argmax
l∈Labels

log(P( f1 | l)) + log(P( f2 | l)) +…+ log(p( fn | l)) + log(P(l))

€ 

= argmax
l∈Labels

f1 log(P( f1 | l)) + f 1 log(1− P( f1 | l))+ ...+ log(P(l))

w0 f1w1 f2w2 

Linear regression 

€ 

h( f ) = w0 + w1 f1 + w2 f2 + ...+ wm fm

weights real value 

€ 

error(h) = (yi − (w0 + w1 f1 + w2 f2 + ...+ wm fm ))
2

i=1

n
∑

Learn weights by minimizing the square error on the training data 

Predict the response based on a weighted, linear combination of 
the features 

3 views of logistic regression 

€ 

log P(1 | x1,x2,...,xm )
1− P(1 | x1,x2,...,xm )

= w0 + w1x2 + w2x2 + ...+ wmxm

€ 

P(1 | x1,x2,...,xm ) =
1

1+ e−(w0 +w1x2 +w2x2 +...+wmxm )

… 

… 
€ 

P(1 | x1,x2,...,xm ) =
ew0 +w1x2 +w2x2 +...+wmxm

1+ ew0 +w1x2 +w2x2 +...+wmxm

linear classifier 

exponential model 
(log-linear model) 

logistic 

Logistic regression 

  Find the best fit of the data based on a logistic 
function 
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Training logistic regression models 

  How should we learn the parameters for logistic 
regression (i.e. the w’s)? 

€ 

log P(1 | x1,x2,...,xm )
1− P(1 | x1,x2,...,xm )

= w0 + w1x2 + w2x2 + ...+ wmxm

€ 

P(1 | x1,x2,...,xm ) =
1

1+ e−(w0 +w1x2 +w2x2 +...+wmxm )

parameters 

Training logistic regression models 

  Idea 1: minimize the squared error (like linear 
regression) 
 Any problems? 

 We don’t know what the actual probability values are! 
€ 

log P(1 | x1,x2,...,xm )
1− P(1 | x1,x2,...,xm )

= w0 + w1x2 + w2x2 + ...+ wmxm

Training logistic regression models 

  Idea 2: maximum likelihood training 

€ 

MLE(data) = argmax
θ

pθ (data)

€ 

= argmaxw 
pw (labeli | f i)

i=1

n

∑

… 

Unfortunately, no closed form solution. € 

= argmaxw 
log pw (labeli | f i)

i=1

n

∑ 1. plug in our logistic 
equation 
2. take partial 
derivatives and solve 

Convex functions 

  Convex functions look something like: 

  What are some nice properties about convex functions? 

  How can we find the minimum/maximum of a convex function? 
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Finding the minimum 

You’re blindfolded, but you can see out of the bottom of the 
blindfold to the ground right by your feet.  I drop you off 
somewhere and tell you that you’re in a convex shaped valley 
and escape is at the bottom/minimum.  How do you get out? 

One approach: gradient descent 

  Partial derivatives give us the slope in that dimension 

  Approach: 
  pick a starting point (w) 
  repeat until likelihood can’t increase in any dimension: 

  pick a dimension 
  move a small amount in that dimension towards increasing likelihood 

(using the derivative) 

Gradient descent 

  pick a starting point (w) 
  repeat until loss doesn’t decrease in all dimensions: 

  pick a dimension 
  move a small amount in that dimension towards decreasing loss (using 

the derivative) 

€ 

wi = wi −α
d
dwi

error(w)

learning rate (how much we want to 
move in the error direction) 

Solving convex functions 

  Gradient descent is just one approach 
  A whole field called convex optimization 

 http://www.stanford.edu/~boyd/cvxbook/ 
  Lots of well known methods 

 Conjugate gradient 
 Generalized Iterative Scaling (GIS) 
  Improved Iterative Scaling (IIS) 
 Limited-memory quasi-Newton (L-BFGS) 

  The key: if we get an error function that is convex, 
we can minimize/maximize it (eventually) 
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Another thought experiment 

What is a 100,000-dimensional space like? 

You’re a 1-D creature, and you decide 
to buy a 2-unit apartment 

2 rooms (very, skinny rooms) 

Another thought experiment 

What is a 100,000-dimensional space like? 

Your job’s going well and you’re 
making good money.  You upgrade to 
a 2-D apartment with 2-units per 
dimension 

4 rooms (very, flat rooms) 

Another thought experiment 

What is a 100,000-dimensional space like? 

You get promoted again and start 
having kids and decide to upgrade to 
another dimension. 

Each time you add a dimension, 
the amount of space you have to 
work with goes up exponentially 

8 rooms (very, normal rooms) 

Another thought experiment 

What is a 100,000-dimensional space like? 

Larry Page steps down as CEO of 
google and they ask you if you’d like 
the job.  You decide to upgrade to a 
100,000 dimensional apartment. 

How much room do you have? 
Can you have a big party? 

2100,000 rooms (it’s very quiet and lonely…) = ~1030 rooms per 
person if you invited everyone on the planet 
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The challenge 

  Because logistic regression has 
fewer constraints (than, say NB) 
it has a lot more options 

  We’re trying to find 100,000 w 
values (or a point in a 100,000 
dimensional space) 

  It’s easy for logistic regression to 
fit to nuances with the data: 
overfitting 

Overfitting 

Preventing overfitting 

€ 

log P(1 | x1,x2,...,xm )
1− P(1 | x1,x2,...,xm )

= w0 + w1x2 + w2x2 + ...+ wmxm

We want to avoid any one features have too much weight 

€ 

MLE(data) = argmaxw 
log pw (y | f )

i=1

n

∑ normal MLE 

ideas? 

Preventing overfitting 

€ 

log P(1 | x1,x2,...,xm )
1− P(1 | x1,x2,...,xm )

= w0 + w1x2 + w2x2 + ...+ wmxm

We want to avoid any one features have too much weight 

€ 

MLE(data) = argmaxw 
log pw (y | f )

i=1

n

∑

€ 

MLE(data) = argmaxw 
log pw (y | f )

i=1

n

∑ −α w j
2

j =1

m

∑

normal MLE 

regularized MLE 



3/4/11	  

7	  

Preventing overfitting: regularization 

€ 

MLE(data) = argmaxw 
log pw (y | f )

i=1

n

∑ −α w j
2

j =1

m

∑ regularized MLE 

penalize large weights 
encourage smaller weights 

What affect will this have on the learned weights assuming 
a positive α? 

-  still a convex problem! 
-  equivalent to assuming your wj are distributed from a 
Gaussian with mean 0 

NB vs. Logistic regression 

  NB and logistic regression look very similar 
 both are probabilistic models 
 both are linear 
 both learn parameters that maximize the log-likelihood 

of the training data 

  How are they different? 

NB vs. Logistic regression 

NB Logistic regression 

€ 

f1 log(P( f1 | l))+ f 1 log(1− P( f1 | l)) + ...+ log(P(l))

Estimates the weights under the 
strict assumption that the features 
are independent 

Naïve bayes is called a generative 
model; it models the joint 
distribution p(features, labels) 

If NB assumption doesn’t hold, can 
adjust the weights to compensate 
for this 

Logistic regression is called a 
discriminative model; it models the 
conditional distribution directly 
 p(labels | features) 

€ 

ew0 +w1x2 +w2x2 +...+wmxm

1+ ew0 +w1x2 +w2x2 +...+wmxm

Some historical perspective 

http://www.reputation.com/blog/2010/02/17/privacy-a-historical-perspective/ 
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Old school optimization 

  Possible parses (or whatever) have scores 
  Pick the one with the best score 
  How do you define the score? 

 Completely ad hoc! 
  Throw anything you want into the mix 
 Add a bonus for this, a penalty for that, etc. 
  Think about state evaluation function for Mancala… 

Old school optimization 

  “Learning” 

 adjust bonuses and penalties by hand to improve 
performance.  

  Total kludge, but totally flexible too … 
 Can throw in any intuitions you might have 

  But we’re purists… we only use probabilities! 

New “revolution”? 

  Probabilities! 

New “revolution”? 

  Probabilities! Exposé at 9 

Probabilistic Revolution 
Not Really a Revolution,  
Critics Say 

Log-probabilities no more  
than scores in disguise 
“We’re just adding stuff up like the old corrupt regime 
did,” admits spokesperson 
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Probabilists   Rally   Behind    Paradigm 

“.2, .4, .6, .8!  We’re not gonna take your bait!” 
1.  Can estimate our parameters automatically  

  e.g., log p(t7 | t5, t6)               (trigram tag probability) 
  from supervised or unsupervised data 

2.  Our results are more meaningful 
  Can use probabilities to place bets, quantify risk 
  e.g., how sure are we that this is the correct parse? 

3.  Our results can be meaningfully combined ⇒ modularity!  
  Multiply indep. conditional probs – normalized, unlike scores 
  p(English text) * p(English phonemes | English text) * p(Jap. phonemes | 

English phonemes) * p(Jap. text | Jap. phonemes) 
  p(semantics) * p(syntax | semantics) * p(morphology | syntax) * p

(phonology | morphology) * p(sounds | phonology) 

83% of 

^ 
Probabilists Regret Being Bound by Principle 

  Ad-hoc approach does have one advantage 
  Consider e.g. Naïve Bayes for spam categorization: 

  Buy this supercalifragilistic Ginsu knife set 
for only $39 today … 

  Some useful features: 
  Contains Buy  
  Contains supercalifragilistic  
  Contains a dollar amount under $100  
  Contains an imperative sentence 
  Reading level = 8th grade 
  Mentions money (use word classes and/or regexp to detect this) 

Any problem with these features for NB? 

Probabilists Regret Being Bound by Principle 

  Naïve Bayes 
  Contains a dollar amount under $100  
  Mentions money (use word classes and/or regexp to detect this) 

Buy this supercalifragilistic Ginsu knife set for 
only $39 today … 

Spam not-Spam 

< $100 0.5 0.02 

Money amount 0.9 0.1 

How likely is it to see both features in either 
class using NB?  Is this right? 

Probabilists Regret Being Bound by Principle 

  Naïve Bayes 
  Contains a dollar amount under $100  
  Mentions money (use word classes and/or regexp to detect this) 

Buy this supercalifragilistic Ginsu knife set for 
only $39 today … 

Spam not-Spam 

< $100 0.5 0.02 

Money amount 0.9 0.1 

0.5*0.9=0.45 0.02*0.1=0.002 

Overestimates!  The problem is that the features are 
not independent 
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NB vs. Logistic regression 

  Logistic regression allows us to put in features that 
overlap and adjust the probabilities accordingly 

  Which to use? 
 NB is better for small data sets: strong model 

assumptions keep the model from overfitting 

 Logistic regression is better for larger data sets: can 
exploit the fact that NB assumption is rarely true 

NB      vs. Logistic regression 

NB      vs. Logistic regression Logistic regression with more classes 

  NB works on multiple classes 

  Logistic regression only works on two classes 

  Idea: something like logistic regression, but with more classes 
  Like NB, one model per each class 

  The model is a weight vector 

€ 

P(class1 | x1,x2,...,xm ) = ew1,0 +w1,1x2 +w1,2x2 +...+w1,mxm

€ 

P(class2 | x1,x2,...,xm ) = ew2,0 +w2,1x2 +w2,2x2 +...+w2,mxm

€ 

P(class3 | x1,x2,...,xm ) = ew3,0 +w3,1x2 +w3,2x2 +...+w3,mxm

… anything wrong with this? 
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Challenge: probabilistic modeling 

€ 

P(class1 | x1,x2,...,xm ) = ew1,0 +w1,1x2 +w1,2x2 +...+w1,mxm

€ 

P(class2 | x1,x2,...,xm ) = ew2,0 +w2,1x2 +w2,2x2 +...+w2,mxm

€ 

P(class3 | x1,x2,...,xm ) = ew3,0 +w3,1x2 +w3,2x2 +...+w3,mxm

… 

These are supposed to be probabilities! 

€ 

P(class1 | x1,x2,...,xm ) + P(class2 | x1,x2,...,xm ) + P(class3 | x1,x2,...,xm ) + ...≠1

Ideas? 

Maximum Entropy Modeling aka  
Multinomial Logistic Regression 

€ 

P(class1 | x1,x2,...,xm ) =
ew1,0 +w1,1x2 +w1,2x2 +...+w1,mxm

P(class1 | x1,x2,...,xm ) + P(class2 | x1,x2,...,xm ) + P(class3 | x1,x2,...,xm ) + ...

€ 

P(class1 | x1,x2,...,xm ) =
ew1,0 +w1,1x2 +w1,2x2 +...+w1,mxm

P(classi | x1,x2,...,xm )
i=1

|C |

∑

Normalize each class probability by the sum over all the classes 

€ 

=
ew1,0 +w1,1x2 +w1,2x2 +...+w1,mxm

ewi ,0 +wi ,1x2 +wi ,2x2 +...+wi ,mxm

i=1

|C |

∑
normalizing 
constant 

Log-linear model 

€ 

P(class1 | x1,x2,...,xm ) =
ew1,0 +w1,1x2 +w1,2x2 +...+w1,mxm

P(classi | x1,x2,...,xm )
i=1

|C |

∑

€ 

logP(class1 | x1,x2,...,xm ) = w1,0 + w1,1x2 + w1,2x2 + ...+ w1,mxm − log P(classi | x1,x2,...,xm )
i=1

|C |

∑
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

- still just a linear combination of feature weightings  
-  class specific features 

Training the model 

  Can still use maximum likelihood training 

  Use regularization 

  Plug into a convex optimization package 
  there are a few complications, but this is the basic idea 

€ 

MLE(data) = argmax
θ

log p(labeli | f i)
i=1

n

∑

€ 

MLE(data) = argmax
θ

log p(labeli | f i)
i=1

n

∑ −αR(θ)



3/4/11	  

12	  

Maximum Entropy 

  Suppose there are 10 classes, A through J. 
  I don’t give you any other information. 
  Question: Given a new example m: what is your guess for p(C | m)? 

  Suppose I tell you that 55% of all examples are in class A. 
  Question: Now what is your guess for p(C | m)? 

  Suppose I also tell you that 10% of all examples contain Buy and 
80% of these are in class A or C. 

  Question: Now what is your guess for p(C | m),  
  if m contains Buy? 

Maximum Entropy 

A B C D E F G H I J 
prob 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

Maximum entropy principle: given the constraints, pick the 
probabilities as “equally as possible” 

Qualitatively 

Quantitatively 
Maximum entropy: given the constraints, pick the probabilities so as 
to maximize the entropy 

€ 

Entropy(model) = p(c)log p(c)
c
∑

Maximum Entropy 

A B C D E F G H I J 
prob 0.55 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 

Maximum entropy principle: given the constraints, pick the 
probabilities as “equally as possible” 

Qualitatively 

Quantitatively 
Maximum entropy: given the constraints, pick the probabilities so as 
to maximize the entropy 

€ 

Entropy(model) = p(c)log p(c)
c
∑

Maximum Entropy 

A B C D E F G H I J 
Buy .051 .0025 .029 .0025 .0025 .0025 .0025 .0025 .0025 .0025 

Other .499 .0446 .0446 .0446 .0446 .0446 .0446 .0446 .0446 .0446 

  Column A sums to 0.55   (“55% of all messages are in class A”) 
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Maximum Entropy 

A B C D E F G H I J 
Buy .051 .0025 .029 .0025 .0025 .0025 .0025 .0025 .0025 .0025 

Other .499 .0446 .0446 .0446 .0446 .0446 .0446 .0446 .0446 .0446 

  Column A sums to 0.55 
  Row Buy sums to 0.1   (“10% of all messages contain Buy”) 

Maximum Entropy 

A B C D E F G H I J 
Buy .051 .0025 .029 .0025 .0025 .0025 .0025 .0025 .0025 .0025 

Other .499 .0446 .0446 .0446 .0446 .0446 .0446 .0446 .0446 .0446 

  Column A sums to 0.55 
  Row Buy sums to 0.1 
  (Buy, A) and (Buy, C) cells sum to 0.08  (“80% of the 10%”) 

  Given these constraints, fill in cells “as equally as possible”: 
maximize the entropy  (related to cross-entropy, perplexity) 

Entropy = -.051 log .051 - .0025 log .0025 - .029 log .029 - … 
Largest if probabilities are evenly distributed 

Maximum Entropy 

A B C D E F G H I J 
Buy .051 .0025 .029 .0025 .0025 .0025 .0025 .0025 .0025 .0025 

Other .499 .0446 .0446 .0446 .0446 .0446 .0446 .0446 .0446 .0446 

  Column A sums to 0.55 
  Row Buy sums to 0.1 
  (Buy, A) and (Buy, C) cells sum to 0.08  (“80% of the 10%”) 

  Given these constraints, fill in cells “as equally as possible”: 
maximize the entropy 

  Now p(Buy, C) = .029  and  p(C | Buy) = .29 
  We got a compromise: p(C | Buy) < p(A | Buy) < .55 

Generalizing to More Features 

A B C D E F G H … 
Buy .051 .0025 .029 .0025 .0025 .0025 .0025 .0025 

Other .499 .0446 .0446 .0446 .0446 .0446 .0446 .0446 

<$100 
Other 
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What we just did 

  For each feature (“contains Buy”), see what fraction of 
training data has it 

  Many distributions p(c,m) would predict these fractions  
  Of these, pick distribution that has max entropy 

  Amazing Theorem: The maximum entropy model is the 
same as the maximum likelihood model! 
  If we calculate the maximum likelihood parameters, we’re also 

calculating the maximum entropy model 

What to take home… 

  Many learning approaches 
  Bayesian approaches (of which NB is just one) 
  Linear regression 
  Logistic regression 
  Maximum Entropy (multinomial logistic regression) 
  SVMs 
  Decision trees 
  … 

  Different models have different strengths/weaknesses/uses 
  Understand what the model is doing 
  Understand what assumptions the model is making 
  Pick the model that makes the most sense for your problem/data 

  Feature selection is important 

Articles discussion 

  http://www.nytimes.com/2010/12/23/business/
23trading.html 

  What are some challenges? 
  Will it work? 
  Any concerns/problems with using this type of 

technology? 
  Gaming the system? 


