
3/4/11	

1	

NATURAL LANGUAGE LEARNING:
MAXIMUM ENTROPY

David Kauchak
CS159, Spring 2011

Some material derived
from Jason Eisner

Admin

  Assignment 4
  Assignment 3 grades back soon

  Next Monday’s class in the intro lab(Edmunds 229)
  Quiz #2 next Wednesday

Linear classifier

  A linear classifier predicts the label based on a weighted, linear combination of
the features

  For two classes, a linear classifier can be viewed as a plane (hyperplane) in the
feature space

€

prediction = w0 + w1 f1 + w2 f2 + ...+ wm fm

f1

f2
f3

The Naive Bayes Classifier

Conditional Independence Assumption: features are
independent of each other given the class:

€

label = argmax
l∈Labels

P(f1 | l)P(f2 | l)… p(fn | l)P(l)

spam

buy
viagra the now

enlargement assume binary
features for now

Learn parameters by maximum likelihood estimation (i.e. maximize
likelihood of the training data)

3/4/11	

2	

NB is a linear classifier

€

label = argmax
l∈Labels

P(f1 | l)P(f2 | l)… p(fn | l)P(l)

€

= argmax
l∈Labels

log(P(f1 | l)P(f2 | l)… p(fn | l)P(l))

€

= argmax
l∈Labels

log(P(f1 | l)) + log(P(f2 | l)) +…+ log(p(fn | l)) + log(P(l))

€

= argmax
l∈Labels

f1 log(P(f1 | l)) + f 1 log(1− P(f1 | l))+ ...+ log(P(l))

w0 f1w1 f2w2

Linear regression

€

h(f) = w0 + w1 f1 + w2 f2 + ...+ wm fm

weights real value

€

error(h) = (yi − (w0 + w1 f1 + w2 f2 + ...+ wm fm))
2

i=1

n
∑

Learn weights by minimizing the square error on the training data

Predict the response based on a weighted, linear combination of
the features

3 views of logistic regression

€

log P(1 | x1,x2,...,xm)
1− P(1 | x1,x2,...,xm)

= w0 + w1x2 + w2x2 + ...+ wmxm

€

P(1 | x1,x2,...,xm) =
1

1+ e−(w0 +w1x2 +w2x2 +...+wmxm)

…

…
€

P(1 | x1,x2,...,xm) =
ew0 +w1x2 +w2x2 +...+wmxm

1+ ew0 +w1x2 +w2x2 +...+wmxm

linear classifier

exponential model
(log-linear model)

logistic

Logistic regression

  Find the best fit of the data based on a logistic
function

3/4/11	

3	

Training logistic regression models

  How should we learn the parameters for logistic
regression (i.e. the w’s)?

€

log P(1 | x1,x2,...,xm)
1− P(1 | x1,x2,...,xm)

= w0 + w1x2 + w2x2 + ...+ wmxm

€

P(1 | x1,x2,...,xm) =
1

1+ e−(w0 +w1x2 +w2x2 +...+wmxm)

parameters

Training logistic regression models

  Idea 1: minimize the squared error (like linear
regression)
 Any problems?

 We don’t know what the actual probability values are!
€

log P(1 | x1,x2,...,xm)
1− P(1 | x1,x2,...,xm)

= w0 + w1x2 + w2x2 + ...+ wmxm

Training logistic regression models

  Idea 2: maximum likelihood training

€

MLE(data) = argmax
θ

pθ (data)

€

= argmaxw
pw (labeli | f i)

i=1

n

∑

…

Unfortunately, no closed form solution. €

= argmaxw
log pw (labeli | f i)

i=1

n

∑ 1. plug in our logistic
equation
2. take partial
derivatives and solve

Convex functions

  Convex functions look something like:

  What are some nice properties about convex functions?

  How can we find the minimum/maximum of a convex function?

3/4/11	

4	

Finding the minimum

You’re blindfolded, but you can see out of the bottom of the
blindfold to the ground right by your feet. I drop you off
somewhere and tell you that you’re in a convex shaped valley
and escape is at the bottom/minimum. How do you get out?

One approach: gradient descent

  Partial derivatives give us the slope in that dimension

  Approach:
  pick a starting point (w)
  repeat until likelihood can’t increase in any dimension:

  pick a dimension
  move a small amount in that dimension towards increasing likelihood

(using the derivative)

Gradient descent

  pick a starting point (w)
  repeat until loss doesn’t decrease in all dimensions:

  pick a dimension
  move a small amount in that dimension towards decreasing loss (using

the derivative)

€

wi = wi −α
d
dwi

error(w)

learning rate (how much we want to
move in the error direction)

Solving convex functions

  Gradient descent is just one approach
  A whole field called convex optimization

 http://www.stanford.edu/~boyd/cvxbook/
  Lots of well known methods

 Conjugate gradient
 Generalized Iterative Scaling (GIS)
  Improved Iterative Scaling (IIS)
 Limited-memory quasi-Newton (L-BFGS)

  The key: if we get an error function that is convex,
we can minimize/maximize it (eventually)

3/4/11	

5	

Another thought experiment

What is a 100,000-dimensional space like?

You’re a 1-D creature, and you decide
to buy a 2-unit apartment

2 rooms (very, skinny rooms)

Another thought experiment

What is a 100,000-dimensional space like?

Your job’s going well and you’re
making good money. You upgrade to
a 2-D apartment with 2-units per
dimension

4 rooms (very, flat rooms)

Another thought experiment

What is a 100,000-dimensional space like?

You get promoted again and start
having kids and decide to upgrade to
another dimension.

Each time you add a dimension,
the amount of space you have to
work with goes up exponentially

8 rooms (very, normal rooms)

Another thought experiment

What is a 100,000-dimensional space like?

Larry Page steps down as CEO of
google and they ask you if you’d like
the job. You decide to upgrade to a
100,000 dimensional apartment.

How much room do you have?
Can you have a big party?

2100,000 rooms (it’s very quiet and lonely…) = ~1030 rooms per
person if you invited everyone on the planet

3/4/11	

6	

The challenge

  Because logistic regression has
fewer constraints (than, say NB)
it has a lot more options

  We’re trying to find 100,000 w
values (or a point in a 100,000
dimensional space)

  It’s easy for logistic regression to
fit to nuances with the data:
overfitting

Overfitting

Preventing overfitting

€

log P(1 | x1,x2,...,xm)
1− P(1 | x1,x2,...,xm)

= w0 + w1x2 + w2x2 + ...+ wmxm

We want to avoid any one features have too much weight

€

MLE(data) = argmaxw
log pw (y | f)

i=1

n

∑ normal MLE

ideas?

Preventing overfitting

€

log P(1 | x1,x2,...,xm)
1− P(1 | x1,x2,...,xm)

= w0 + w1x2 + w2x2 + ...+ wmxm

We want to avoid any one features have too much weight

€

MLE(data) = argmaxw
log pw (y | f)

i=1

n

∑

€

MLE(data) = argmaxw
log pw (y | f)

i=1

n

∑ −α w j
2

j =1

m

∑

normal MLE

regularized MLE

3/4/11	

7	

Preventing overfitting: regularization

€

MLE(data) = argmaxw
log pw (y | f)

i=1

n

∑ −α w j
2

j =1

m

∑ regularized MLE

penalize large weights
encourage smaller weights

What affect will this have on the learned weights assuming
a positive α?

-  still a convex problem!
-  equivalent to assuming your wj are distributed from a
Gaussian with mean 0

NB vs. Logistic regression

  NB and logistic regression look very similar
 both are probabilistic models
 both are linear
 both learn parameters that maximize the log-likelihood

of the training data

  How are they different?

NB vs. Logistic regression

NB Logistic regression

€

f1 log(P(f1 | l))+ f 1 log(1− P(f1 | l)) + ...+ log(P(l))

Estimates the weights under the
strict assumption that the features
are independent

Naïve bayes is called a generative
model; it models the joint
distribution p(features, labels)

If NB assumption doesn’t hold, can
adjust the weights to compensate
for this

Logistic regression is called a
discriminative model; it models the
conditional distribution directly
 p(labels | features)

€

ew0 +w1x2 +w2x2 +...+wmxm

1+ ew0 +w1x2 +w2x2 +...+wmxm

Some historical perspective

http://www.reputation.com/blog/2010/02/17/privacy-a-historical-perspective/

3/4/11	

8	

Old school optimization

  Possible parses (or whatever) have scores
  Pick the one with the best score
  How do you define the score?

 Completely ad hoc!
  Throw anything you want into the mix
 Add a bonus for this, a penalty for that, etc.
  Think about state evaluation function for Mancala…

Old school optimization

  “Learning”

 adjust bonuses and penalties by hand to improve
performance.

  Total kludge, but totally flexible too …
 Can throw in any intuitions you might have

  But we’re purists… we only use probabilities!

New “revolution”?

  Probabilities!

New “revolution”?

  Probabilities! Exposé at 9

Probabilistic Revolution
Not Really a Revolution,
Critics Say

Log-probabilities no more
than scores in disguise
“We’re just adding stuff up like the old corrupt regime
did,” admits spokesperson

3/4/11	

9	

Probabilists Rally Behind Paradigm

“.2, .4, .6, .8! We’re not gonna take your bait!”
1.  Can estimate our parameters automatically

  e.g., log p(t7 | t5, t6) (trigram tag probability)
  from supervised or unsupervised data

2.  Our results are more meaningful
  Can use probabilities to place bets, quantify risk
  e.g., how sure are we that this is the correct parse?

3.  Our results can be meaningfully combined ⇒ modularity!
  Multiply indep. conditional probs – normalized, unlike scores
  p(English text) * p(English phonemes | English text) * p(Jap. phonemes |

English phonemes) * p(Jap. text | Jap. phonemes)
  p(semantics) * p(syntax | semantics) * p(morphology | syntax) * p

(phonology | morphology) * p(sounds | phonology)

83% of

^
Probabilists Regret Being Bound by Principle

  Ad-hoc approach does have one advantage
  Consider e.g. Naïve Bayes for spam categorization:

  Buy this supercalifragilistic Ginsu knife set
for only $39 today …

  Some useful features:
  Contains Buy
  Contains supercalifragilistic
  Contains a dollar amount under $100
  Contains an imperative sentence
  Reading level = 8th grade
  Mentions money (use word classes and/or regexp to detect this)

Any problem with these features for NB?

Probabilists Regret Being Bound by Principle

  Naïve Bayes
  Contains a dollar amount under $100
  Mentions money (use word classes and/or regexp to detect this)

Buy this supercalifragilistic Ginsu knife set for
only $39 today …

Spam not-Spam

< $100 0.5 0.02

Money amount 0.9 0.1

How likely is it to see both features in either
class using NB? Is this right?

Probabilists Regret Being Bound by Principle

  Naïve Bayes
  Contains a dollar amount under $100
  Mentions money (use word classes and/or regexp to detect this)

Buy this supercalifragilistic Ginsu knife set for
only $39 today …

Spam not-Spam

< $100 0.5 0.02

Money amount 0.9 0.1

0.5*0.9=0.45 0.02*0.1=0.002

Overestimates! The problem is that the features are
not independent

3/4/11	

10	

NB vs. Logistic regression

  Logistic regression allows us to put in features that
overlap and adjust the probabilities accordingly

  Which to use?
 NB is better for small data sets: strong model

assumptions keep the model from overfitting

 Logistic regression is better for larger data sets: can
exploit the fact that NB assumption is rarely true

NB vs. Logistic regression

NB vs. Logistic regression Logistic regression with more classes

  NB works on multiple classes

  Logistic regression only works on two classes

  Idea: something like logistic regression, but with more classes
  Like NB, one model per each class

  The model is a weight vector

€

P(class1 | x1,x2,...,xm) = ew1,0 +w1,1x2 +w1,2x2 +...+w1,mxm

€

P(class2 | x1,x2,...,xm) = ew2,0 +w2,1x2 +w2,2x2 +...+w2,mxm

€

P(class3 | x1,x2,...,xm) = ew3,0 +w3,1x2 +w3,2x2 +...+w3,mxm

… anything wrong with this?

3/4/11	

11	

Challenge: probabilistic modeling

€

P(class1 | x1,x2,...,xm) = ew1,0 +w1,1x2 +w1,2x2 +...+w1,mxm

€

P(class2 | x1,x2,...,xm) = ew2,0 +w2,1x2 +w2,2x2 +...+w2,mxm

€

P(class3 | x1,x2,...,xm) = ew3,0 +w3,1x2 +w3,2x2 +...+w3,mxm

…

These are supposed to be probabilities!

€

P(class1 | x1,x2,...,xm) + P(class2 | x1,x2,...,xm) + P(class3 | x1,x2,...,xm) + ...≠1

Ideas?

Maximum Entropy Modeling aka
Multinomial Logistic Regression

€

P(class1 | x1,x2,...,xm) =
ew1,0 +w1,1x2 +w1,2x2 +...+w1,mxm

P(class1 | x1,x2,...,xm) + P(class2 | x1,x2,...,xm) + P(class3 | x1,x2,...,xm) + ...

€

P(class1 | x1,x2,...,xm) =
ew1,0 +w1,1x2 +w1,2x2 +...+w1,mxm

P(classi | x1,x2,...,xm)
i=1

|C |

∑

Normalize each class probability by the sum over all the classes

€

=
ew1,0 +w1,1x2 +w1,2x2 +...+w1,mxm

ewi ,0 +wi ,1x2 +wi ,2x2 +...+wi ,mxm

i=1

|C |

∑
normalizing
constant

Log-linear model

€

P(class1 | x1,x2,...,xm) =
ew1,0 +w1,1x2 +w1,2x2 +...+w1,mxm

P(classi | x1,x2,...,xm)
i=1

|C |

∑

€

logP(class1 | x1,x2,...,xm) = w1,0 + w1,1x2 + w1,2x2 + ...+ w1,mxm − log P(classi | x1,x2,...,xm)
i=1

|C |

∑
⎛

⎝
⎜

⎞

⎠
⎟

- still just a linear combination of feature weightings
-  class specific features

Training the model

  Can still use maximum likelihood training

  Use regularization

  Plug into a convex optimization package
  there are a few complications, but this is the basic idea

€

MLE(data) = argmax
θ

log p(labeli | f i)
i=1

n

∑

€

MLE(data) = argmax
θ

log p(labeli | f i)
i=1

n

∑ −αR(θ)

3/4/11	

12	

Maximum Entropy

  Suppose there are 10 classes, A through J.
  I don’t give you any other information.
  Question: Given a new example m: what is your guess for p(C | m)?

  Suppose I tell you that 55% of all examples are in class A.
  Question: Now what is your guess for p(C | m)?

  Suppose I also tell you that 10% of all examples contain Buy and
80% of these are in class A or C.

  Question: Now what is your guess for p(C | m),
 if m contains Buy?

Maximum Entropy

A B C D E F G H I J
prob 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Maximum entropy principle: given the constraints, pick the
probabilities as “equally as possible”

Qualitatively

Quantitatively
Maximum entropy: given the constraints, pick the probabilities so as
to maximize the entropy

€

Entropy(model) = p(c)log p(c)
c
∑

Maximum Entropy

A B C D E F G H I J
prob 0.55 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

Maximum entropy principle: given the constraints, pick the
probabilities as “equally as possible”

Qualitatively

Quantitatively
Maximum entropy: given the constraints, pick the probabilities so as
to maximize the entropy

€

Entropy(model) = p(c)log p(c)
c
∑

Maximum Entropy

A B C D E F G H I J
Buy .051 .0025 .029 .0025 .0025 .0025 .0025 .0025 .0025 .0025

Other .499 .0446 .0446 .0446 .0446 .0446 .0446 .0446 .0446 .0446

  Column A sums to 0.55 (“55% of all messages are in class A”)

3/4/11	

13	

Maximum Entropy

A B C D E F G H I J
Buy .051 .0025 .029 .0025 .0025 .0025 .0025 .0025 .0025 .0025

Other .499 .0446 .0446 .0446 .0446 .0446 .0446 .0446 .0446 .0446

  Column A sums to 0.55
  Row Buy sums to 0.1 (“10% of all messages contain Buy”)

Maximum Entropy

A B C D E F G H I J
Buy .051 .0025 .029 .0025 .0025 .0025 .0025 .0025 .0025 .0025

Other .499 .0446 .0446 .0446 .0446 .0446 .0446 .0446 .0446 .0446

  Column A sums to 0.55
  Row Buy sums to 0.1
  (Buy, A) and (Buy, C) cells sum to 0.08 (“80% of the 10%”)

  Given these constraints, fill in cells “as equally as possible”:
maximize the entropy (related to cross-entropy, perplexity)

Entropy = -.051 log .051 - .0025 log .0025 - .029 log .029 - …
Largest if probabilities are evenly distributed

Maximum Entropy

A B C D E F G H I J
Buy .051 .0025 .029 .0025 .0025 .0025 .0025 .0025 .0025 .0025

Other .499 .0446 .0446 .0446 .0446 .0446 .0446 .0446 .0446 .0446

  Column A sums to 0.55
  Row Buy sums to 0.1
  (Buy, A) and (Buy, C) cells sum to 0.08 (“80% of the 10%”)

  Given these constraints, fill in cells “as equally as possible”:
maximize the entropy

  Now p(Buy, C) = .029 and p(C | Buy) = .29
  We got a compromise: p(C | Buy) < p(A | Buy) < .55

Generalizing to More Features

A B C D E F G H …
Buy .051 .0025 .029 .0025 .0025 .0025 .0025 .0025

Other .499 .0446 .0446 .0446 .0446 .0446 .0446 .0446

<$100
Other

3/4/11	

14	

What we just did

  For each feature (“contains Buy”), see what fraction of
training data has it

  Many distributions p(c,m) would predict these fractions
  Of these, pick distribution that has max entropy

  Amazing Theorem: The maximum entropy model is the
same as the maximum likelihood model!
  If we calculate the maximum likelihood parameters, we’re also

calculating the maximum entropy model

What to take home…

  Many learning approaches
  Bayesian approaches (of which NB is just one)
  Linear regression
  Logistic regression
  Maximum Entropy (multinomial logistic regression)
  SVMs
  Decision trees
  …

  Different models have different strengths/weaknesses/uses
  Understand what the model is doing
  Understand what assumptions the model is making
  Pick the model that makes the most sense for your problem/data

  Feature selection is important

Articles discussion

  http://www.nytimes.com/2010/12/23/business/
23trading.html

  What are some challenges?
  Will it work?
  Any concerns/problems with using this type of

technology?
  Gaming the system?

