Admin

Admin

Assignment 2

Perplexity

What was the best training set size?

NATURAL LANGUAGE
LEARNING: LINEAR MODELS

David Kouchak
C159, Spring 2011

The mind-reading game

How good are you at guessing random numbers?

Repeat 100 times: Computer guesses whether you'll type 0/1 You type 0 or 1

http://seed.ucsd.edu/~mindreader/ [written by Y. Freund and R. Schapire]

The mind-reading game

The computer is right much more than half the time...

Strategy: computer predicts next keystroke based on the last few (maintains weights on different patterns)

There are patterns everywhere... even in "randomness"!

Why machine learning?

Lot's of data

- Hand-written rules just don't do it
- Performance is much better than what people can do
- Why not just study machine learning?
 - Domain knowledge/expertise is still very important
 - What types of features to useWhat models are important

Machine learning problems

- Lots of different types of problems
 - What data is available:
 - Supervised, unsupervised, semi-supervised, reinforcement learning
 - $\hfill\square$ How are we getting the data:
 - online vs. offline learning
 - Type of model:
 - generative vs. disciminativeparametric vs. non-parametric
 - parametric vs. non-parametric
 - SVM, NB, decision tree, k-means
 - What are we trying to predict:
 - classification vs. regression

Supervised learning Unsupervised learning Much easier to get our hands on unlabeled data EM was an unsupervised approach learned clusters/groups without any label learned grammar probabilities without trees learned HMM probabilities without labels □ Because there is no label, often can get odd results grammar learned by inside-outside often has little relation to linguistically motivated grammar may cluster bananas/apples or green/red/yellow APPLES Supervised learning: given labeled data

BANANAS

3

Bayesian Classification

We represent a data item based on the features:

 $D = \langle f_1, f_2, \dots, f_n \rangle$

Classifying

$$label = \operatorname*{argmax}_{l \in I = h, l} P(l \mid f_1, f_2, \dots, f_n)$$

Given an *new* example, classify it as the label with the largest conditional probability

		Examples
features	response	 predict a readability score between 0-100 for a document predict the number of votes/reposts predict cost to insure predict income predict life longevity
f ₁ , f ₂ , f ₃ ,, f _n	1.0	
f ₁ , f ₂ , f ₃ ,, f _n	2.3	
$f_1, f_2, f_3,, f_n$.3	
f ₁ , f ₂ , f ₃ ,, f _n	100.4	
f ₁ , f ₂ , f ₃ ,, f _n	100	

Model-based regression

- Just like unsupervised approaches, may supervised approaches start with some model and try and "fit it" to the data
- Regression models
 - 🗖 linear
 - Iogistic
 - polynomial
 - ••••

Linear regression

We'd like to minimize the error
 Find w₁ and w₀ such that the error is minimized

$$error(h) = \sum_{i=1}^{n} (y_i - (w_1 f_i + w_0))^2$$

□ We can solve this in closed form

Multiple linear regression

- Often, we don't just have one feature, but have many features, say m
- Now we have a line in m dimensions
- Still just a line

$$h(\bar{f}) = w_0 + w_1 f_1 + w_2 f_2 + \ldots + w_m f_m$$
weights

A linear model is additive. The weight of the feature dimension specifies importance/direction

Multiple linear regression

We can still calculate the squared error like before

$$h(\bar{f}) = w_0 + w_1 f_1 + w_2 f_2 + \dots + w_m f_m$$

$$error(h) = \sum_{i=1}^{n} (y_i - (w_0 + w_1 f_1 + w_2 f_2 + \dots + w_m f_m))^2$$

Still can solve this exactly!

 We'd like to do something like regression, but that gives us a probability

Odds ratio

- $\hfill \ensuremath{\square}$ Rather than predict the probability, we can predict the ratio of 1/0 (true/false)
- Predict the odds that it is 1 (true): How much more likely is 1 than 0.
- Does this help us?

$$\frac{P(1|x_1, x_2, \dots, x_m)}{P(0|x_1, x_2, \dots, x_m)} = \frac{P(1|x_1, x_2, \dots, x_m)}{1 - P(1|x_1, x_2, \dots, x_m)} = w_0 + x_1 w_1 + w_2 x_2 + \dots + w_m x_m$$

14

