What is the internet?

http://www.youtube.com/watch?v=JUs7iG1mNjl

Admin

- My laptop
- Assignment 2 grading
- Assignment 3 out
 - Due Friday at 6pm
 - packages: submit code in package structure
 - in code:
 nlp/parser/*.java
- Read the book!

Parsing other languages

- <u>http://nlp.stanford.edu/software/lex-parser.shtml</u>
 German
- Chinese
- Arabic
- Most parsers can be retrained as long as you have a Treebank
 - Czech
 - Korean
 - http://www.cis.upenn.edu/~xtag/koreantag/

	Learned Splits							
■ Pro	per Nouns (I	NNP):						
	NNP-14	Oct.	Nov.	Sept.				
	NNP-12	John	Robert	James				
	NNP-2	J.	E.	L.				
	NNP-1	Bush	Noriega	Peters				
	NNP-15	New	San	Wall				
	NNP-3	York	Francisco	Street				
 Per 	sonal prono	uns (PRP):						
	PRP-0	lt	He	1				
	PRP-1	it	he	they				
	PRP-2	it	them	him				

	Learned Splits Relative adverbs (RBR):								
🗆 Rel									
	RBR-0	further	lower	higher					
	RBR-1	more	less	More					
	RBR-2	earlier	Earlier	later					
🗖 Car	dinal Numb	ers (CD):							
	CD-7	one	two	Three					
	CD-4	1989	1990	1988					
	CD-11	million	billion	trillion					
	CD-0	1	50	100					
	CD-3	1	30	31					

Corpora examples

Monolingual text continued

- Enron e-mails
- 517K e-mails
- Twitter
- Chatroom
- Many non-English resources

Parallel data

- ~10M sentences of Chinese-English and Arabic-English
 Europarl
 - ~1.5M sentences English with 10 different languages

Corpora examples

Annotated

Brown Corpus

- 1M words with part of speech tag
- Penn Treebank
 - 1M words with full parse trees annotated
- Other Treebanks
- Treebank refers to a corpus annotated with trees (usually
- syntactic)
- Chinese: 51K sentences
- Arabic: 145K words
- many other languages...
- BLIPP: 300M words (automatically annotated)

Corpora examples Problem Unlabeled Labeled □ Many others... Spam and other text classification Google n-grams Penn Treebank 2006 (24GB compressed!) 1M words with full parse 13M unigrams trees annotated 300M bigrams ■ ~1B 3,4 and 5-grams e-mail Speech a kas Video (with transcripts) 1.4

web

Google

247 billion e-mails a day

1 trillion web pages

Idea 3: some things to think about

- How many iterations should we do it for?We should keep iterating as long as we improve
- Will we always get better?Not guaranteed for most measures
- What does "get better" mean?
 Use our friend the development set
 Does it increase the likelihood of the training data

Idea 4

- Viterbi approximation of EM
 Fast
 - Works ok (but we can do better)
 - Easy to get biased based on initial randomness
- What information is the Viterbi approximation throwing away?
 - We're somewhat randomly picking the best parse
 - We're ignoring all other possible parses
 - Real EM takes these into account

MLE Example

□ Can we do any better? $likelihood(data) = \prod_{i} p_{\theta}(data_{i})$

- □ p(heads) = 0.5 □ $\log(0.50^{60} * 0.50^{40}) = -69.3$
- p(heads) = 0.7
 log(0.70⁶⁰ * 0.30⁴⁰)=-69.5

EM is a general framework

- Create an initial model, θ'
- Arbitrarily, randomly, or with a small set of training examples
- \square Use the model θ ' to obtain another model θ such that

 $\sum_i \log P_{\theta}(data_i) > \sum_i \log P_{\theta'}(data_i) \qquad \begin{array}{l} \text{i.e. better models data} \\ (increased log likelihood) \end{array}$

 $\hfill\square$ Let $\theta'=\theta$ and repeat the above step until reaching a local maximum

Guaranteed to find a better model after each iteration

Where else have you seen EM?

EM shows up all over the place

- Training HMMs (Baum-Welch algorithm)
- Learning probabilities for Bayesian networks
- EM-clustering
- Learning word alignments for language translation
- Learning Twitter friend network
- Genetics
- Finance
- □ Anytime you have a model and unlabeled data!

EM for parsing (Inside-Outside algorithm)

Expectation: Given the current model, figure out the expected probabilities of the each example

 $p(x \mid \theta_c)$ What is the probability of sentence being grammatical?

Maximization: Given the probabilities of each of the examples, estimate a new model, θ_{c}

Just like maximum likelihood estimation, except we use fractional counts instead of whole counts

Expectation step

p(sentence)_{grammar}

p(time flies like an arrow)_{grammar} = ?

Note: This is the language modeling problem

Expectation step

 $p(time flies like an arrow)_{grammar} = ?$

Sum over all the possible parses! Often, we really want: p(time flies like an arrow | S)

how can we calculate this sum?

Expectation step

p(time flies like an arrow)_{grammar} = ?

Sum over all the possible parses! Often, we really want: p(time flies like an arrow | S)

CKY parsing except sum over possible parses instead of max

EM grammar induction

□ The good:

- We learn a grammar
- At each step we're guaranteed to increase (or keep the same) the likelihood of the training data
- The bad
 - \blacksquare Slow: $O(m^3n^3),$ where m = sentence length and n = nonterminals in the grammar
 - Lot's of local maxima
 - Often have to use more non-terminals in the grammar than are theoretically motivated (often ~3 times)
 - Often non-terminals learned have no relation to traditional constituents

But...

□ If we bootstrap and start with a reasonable grammar, we can often obtain very interesting results

Penn Grammar

$S \rightarrow NP VP$	0.9
$S \rightarrow VP$	0.1
$NP \rightarrow Det A N$	0.5
$NP \rightarrow NP PP$	0.3
$NP \rightarrow PropN$	0.2
$A \rightarrow \epsilon$	0.6
A → Adj A	0.4
$PP \rightarrow Prep NP$	1.0
$VP \rightarrow V NP$	0.7
$\mathrm{VP} \rightarrow \mathrm{VP} \ \mathrm{PP}$	0.3
English	

ngl

	FINAL Results (Accu	racy)	
		≤ 40 words F1	all F1
ENG Cr	Charniak&Johnson '05 (generative)	90.1	89.6
	Split / Merge	90.6	90.1
GER	Dubey '05	76.3	-
	Split / Merge	80.8	80.1
СНИ	Chiang et al. '02	80.0	76.6
	Split / Merge	86.3	83.4

19

EM summary

- □ EM is a popular technique in NLP
- EM is useful when we have lots of unlabeled data
 we may have some labeled data
- or partially labeled data
- Broad range of applications
- Can be hard to get it right, though...

Sample Parse Tree Features

- □ Probability of the parse from the PCFG.
- □ The number of parallel conjuncts.
- "the bird in the tree and the squirrel on the ground"
 "the bird and the squirrel in the tree"
- The degree to which the parse tree is right branching.
 - English parses tend to be right branching (cf. parse of "Book the flight through Houston")
- Frequency of various tree fragments, i.e. specific combinations of 2 or 3 rules.

2-Stage Reranking Approach

- Adapt the PCFG parser to produce an N-best list of the most probable parses in addition to the mostlikely one.
- Extract from each of these parses, a set of global features that help determine if it is a good parse tree.
- Train a discriminative classifier (e.g. logistic regression) using the best parse in each N-best list as positive and others as negative.

Evaluation of Reranking

- Reranking is limited by oracle accuracy, i.e. the accuracy that results when an omniscient oracle picks the best parse from the N-best list.
- □ Typical current oracle accuracy is around F₁=97%
- Reranking can generally improve test accuracy of current PCFG models a percentage point or two

Other Discriminative Parsing

- There are also parsing models that move from generative PCFGs to a fully discriminative model, e.g. max margin parsing (Taskar et al., 2004).
- There is also a recent model that efficiently reranks all of the parses in the complete (compactlyencoded) parse forest, avoiding the need to generate an N-best list (*forest reranking*, Huang, 2008).

Human Parsing

How do humans do it?

How might you try and figure it out computationally/ experimentally?

Human parsing

- Read these sentences
- □ Which one was fastest/slowest?

John put the dog in the pen with a lock.

John carried the dog in the pen with a bone in the car.

John liked the dog in the pen with a bone.

Human Parsing

- Computational parsers can be used to predict human reading time as measured by tracking the time taken to read each word in a sentence.
- Psycholinguistic studies show that words that are more probable given the preceding lexical and syntactic context are read faster.
 - John put the dog in the pen with a lock.
 - John carried the dog in the pen with a bone in the car.
 John liked the dog in the pen with a bone.
- Modeling these effects requires an incremental statistical parser that incorporates one word at a time into a continuously growing parse tree.

Human Parsing

- Computational parsers can be used to predict human reading time as measured by tracking the time taken to read each word in a sentence.
- Psycholinguistic studies show that words that are more probable given the preceding lexical and syntactic context are read faster.
 - John put the dog in the pen with a lock.
 - John put the dog in the pen with a bone in the car.
 - John liked the dog in the pen with a bone.
- Modeling these effects requires an incremental statistical parser that incorporates one word at a time into a continuously growing parse tree.

Garden Path Sentences

People are confused by sentences that seem to have a particular syntactic structure but then suddenly violate this structure, so the listener is "lead down the garden path".

- The horse raced past the barn fell.
- vs. The horse raced past the barn broke his leg.
- The complex houses married students.
- The old man the sea.

- $\hfill\square$ While Anna dressed the baby spit up on the bed.
- Incremental computational parsers can try to predict and explain the problems encountered parsing such sentences.