
2/23/11	

1	

What is the internet?

  http://www.youtube.com/watch?v=JUs7iG1mNjI

NATURAL LANGUAGE
LEARNING: EM
David Kauchak
CS159 – Spring 2011

some slides adapted from
Dan Klein

Admin

  My laptop
  Assignment 2 grading
  Assignment 3 out

 Due Friday at 6pm
 packages: submit code in package structure

  in code:
  nlp/parser/*.java

  Read the book!

Parsing other languages

  http://nlp.stanford.edu/software/lex-parser.shtml
  German
  Chinese
  Arabic

  Most parsers can be retrained as long as you have a Treebank
  Czech
  Korean

  http://www.cis.upenn.edu/~xtag/koreantag/

2/23/11	

2	

Learning good splits:
Latent Variable Grammars

Parse Tree
Sentence Parameters

...

Derivations

Refinement of the DT tag

DT

DT-1 DT-2 DT-3 DT-4

Learned Splits

  Proper Nouns (NNP):

  Personal pronouns (PRP):

NNP-14 Oct. Nov. Sept.
NNP-12 John Robert James
NNP-2 J. E. L.
NNP-1 Bush Noriega Peters

NNP-15 New San Wall
NNP-3 York Francisco Street

PRP-0 It He I
PRP-1 it he they
PRP-2 it them him

  Relative adverbs (RBR):

  Cardinal Numbers (CD):

RBR-0 further lower higher
RBR-1 more less More
RBR-2 earlier Earlier later

CD-7 one two Three
CD-4 1989 1990 1988
CD-11 million billion trillion
CD-0 1 50 100
CD-3 1 30 31
CD-9 78 58 34

Learned Splits

2/23/11	

3	

A step back: data

http://hijinksensue.com/2011/02/15/culturally-biased/

Why do we need computers for
dealing with natural text?

Web is just the start…

e-mail

corporate
databases

http://royal.pingdom.com/2010/01/22/internet-2009-in-numbers/

27 million tweets a day

Blogs: 126 million different blogs

247 billion e-mails a day

Corpora examples

  Linguistic Data Consortium
 http://www.ldc.upenn.edu/Catalog/byType.jsp

  Dictionaries
 WordNet – 206K English words
 CELEX2 – 365K German words

  Monolingual text
 Gigaword corpus

 4M documents (mostly news articles)
 1.7 trillion words
 11GB of data (4GB compressed)

2/23/11	

4	

Corpora examples

  Monolingual text continued
 Enron e-mails

 517K e-mails
 Twitter
 Chatroom
 Many non-English resources

  Parallel data
 ~10M sentences of Chinese-English and Arabic-English
 Europarl

 ~1.5M sentences English with 10 different languages

Corpora examples

  Annotated
  Brown Corpus

  1M words with part of speech tag

  Penn Treebank
  1M words with full parse trees annotated

 Other Treebanks
  Treebank refers to a corpus annotated with trees (usually

syntactic)
  Chinese: 51K sentences
  Arabic: 145K words
  many other languages…
  BLIPP: 300M words (automatically annotated)

Corpora examples

  Many others…
 Spam and other text classification
 Google n-grams

 2006 (24GB compressed!)
 13M unigrams
 300M bigrams
 ~1B 3,4 and 5-grams

 Speech
 Video (with transcripts)

Problem

e-mail

247 billion e-mails a day

web

1 trillion web pages

Penn Treebank
1M words with full parse
trees annotated

Unlabeled Labeled

2/23/11	

5	

Learning a grammar

Learning/
Training

S → NP VP
S → VP
NP → Det A N
NP → NP PP
NP → PropN
A → ε
A → Adj A
PP → Prep NP
VP → V NP
VP → VP PP

0.9
0.1
0.5
0.3
0.2
0.6
0.4
1.0
0.7
0.3

English …

€

P(α →β |α) =
count(α →β)
count(α)

Parsed sentences Grammar

Parsing other data sources

web

1 trillion web pages

What if we wanted to parse
sentences from the web?

Idea 1

Learning/
Training

S → NP VP
S → VP
NP → Det A N
NP → NP PP
NP → PropN
A → ε
A → Adj A
PP → Prep NP
VP → V NP
VP → VP PP

0.9
0.1
0.5
0.3
0.2
0.6
0.4
1.0
0.7
0.3

English …

€

P(α →β |α) =
count(α →β)
count(α)

Penn Treebank Penn Grammar

Idea 1

S → NP VP
S → VP
NP → Det A N
NP → NP PP
NP → PropN
A → ε
A → Adj A
PP → Prep NP
VP → V NP
VP → VP PP

0.9
0.1
0.5
0.3
0.2
0.6
0.4
1.0
0.7
0.3

English

Penn Grammar

web

1 trillion web pages

How well will this work?

2/23/11	

6	

Parsing other data sources

What if we wanted to parse
“sentences” from twitter?

27 million tweets a day

Idea 1

S → NP VP
S → VP
NP → Det A N
NP → NP PP
NP → PropN
A → ε
A → Adj A
PP → Prep NP
VP → V NP
VP → VP PP

0.9
0.1
0.5
0.3
0.2
0.6
0.4
1.0
0.7
0.3

English

Penn Grammar

27 million tweets a day

Probably not going to work very well

Ideas?

Idea 2

Learning/
Training

S → NP VP
S → VP
NP → Det A N
NP → NP PP
NP → PropN
A → ε
A → Adj A
PP → Prep NP
VP → V NP
VP → VP PP

0.9
0.1
0.5
0.3
0.2
0.6
0.4
1.0
0.7
0.3

English

€

P(α →β |α) =
count(α →β)
count(α)

Pseudo-Twitter
grammar

Idea 2

S → NP VP
S → VP
NP → Det A N
NP → NP PP
NP → PropN
A → ε
A → Adj A
PP → Prep NP
VP → V NP
VP → VP PP

0.9
0.1
0.5
0.3
0.2
0.6
0.4
1.0
0.7
0.3

English

Pseudo-Twitter
grammer

27 million tweets a day

*

Often, this improves the parsing performance

2/23/11	

7	

Idea 3

S → NP VP
S → VP
NP → Det A N
NP → NP PP
NP → PropN
A → ε
A → Adj A
PP → Prep NP
VP → V NP
VP → VP PP

0.9
0.1
0.5
0.3
0.2
0.6
0.4
1.0
0.7
0.3

English

Pseudo-Twitter
grammer

27 million tweets a day

*

Learning/
Training €

P(α →β |α) =
count(α →β)
count(α)

Idea 3: some things to think about

  How many iterations should we do it for?
 When should we stop?

  Will we always get better?

  What does “get better” mean?

Idea 3: some things to think about

  How many iterations should we do it for?
 We should keep iterating as long as we improve

  Will we always get better?
 Not guaranteed for most measures

  What does “get better” mean?
 Use our friend the development set
 Does it increase the likelihood of the training data

Idea 4

What if we don’t have any parsed data?

S → NP VP
S → VP
NP → Det A N
NP → NP PP
NP → PropN
A → ε
A → Adj A
PP → Prep NP
VP → V NP
VP → VP PP

0.9
0.1
0.5
0.3
0.2
0.6
0.4
1.0
0.7
0.3

English

Penn Grammar

27 million tweets a day

2/23/11	

8	

Idea 4

S → NP VP
S → VP
NP → Det A N
NP → NP PP
NP → PropN
A → ε
A → Adj A
PP → Prep NP
VP → V NP
VP → VP PP

?
?
?
?
?
?
?
?
?
?

English

Randomly initialized
grammar

27 million tweets a day

Pseudo-random

Idea 4

Learning/
Training

S → NP VP
S → VP
NP → Det A N
NP → NP PP
NP → PropN
A → ε
A → Adj A
PP → Prep NP
VP → V NP
VP → VP PP

0.9
0.1
0.5
0.3
0.2
0.6
0.4
1.0
0.7
0.3

English

€

P(α →β |α) =
count(α →β)
count(α)

Pseudo-Twitter
grammar

Pseudo-random

Idea 4

S → NP VP
S → VP
NP → Det A N
NP → NP PP
NP → PropN
A → ε
A → Adj A
PP → Prep NP
VP → V NP
VP → VP PP

0.9
0.1
0.5
0.3
0.2
0.6
0.4
1.0
0.7
0.3

English

Pseudo-Twitter
grammer

27 million tweets a day

*

Learning/
Training €

P(α →β |α) =
count(α →β)
count(α)

Idea 4

  Viterbi approximation of EM
 Fast
 Works ok (but we can do better)
 Easy to get biased based on initial randomness

  What information is the Viterbi approximation
throwing away?
 We’re somewhat randomly picking the best parse
 We’re ignoring all other possible parses
 Real EM takes these into account

2/23/11	

9	

A digression

Learning/
Training

S → NP VP
S → VP
NP → Det A N
NP → NP PP
NP → PropN
A → ε
A → Adj A
PP → Prep NP
VP → V NP
VP → VP PP

0.9
0.1
0.5
0.3
0.2
0.6
0.4
1.0
0.7
0.3

English …

€

P(α →β |α) =
count(α →β)
count(α)

Parsed sentences Grammar

Why is this called Maximum Likelihood Estimation (MLE)?

MLE

  Maximum likelihood estimation picks the values for
the model parameters that maximize the likelihood
of the training data

S → NP VP
S → VP
NP → Det A N
NP → NP PP
NP → PropN
A → ε
A → Adj A
PP → Prep NP
VP → V NP
VP → VP PP

0.9
0.1
0.5
0.3
0.2
0.6
0.4
1.0
0.7
0.3

model (Θ)

parameters parameter
values

MLE

  Maximum likelihood estimation picks the values for
the model parameters that maximize the likelihood
of the training data

model (Θ)

parameters

S → NP VP
S → VP
NP → Det A N
NP → NP PP
NP → PropN
A → ε
A → Adj A
PP → Prep NP
VP → V NP
VP → VP PP

0.9
0.1
0.5
0.3
0.2
0.6
0.4
1.0
0.7
0.3

parameter values

€

MLE(data) = argmax
θ

pθ (data)

If this is what you want to optimize,
you can do NO BETTER than MLE!

€

= argmax
θ

log(pθ (datai)i
∑)

€

= argmax
θ

pθ (datai)i
∏

MLE example

  You flip a coin 100 times. 60 times you get heads.
  What is the MLE for heads?

  p(head) = 0.60

  What is the likelihood of the data under this model
(each coin flip is a data point)?

€

likelihood(data) =
pθ (datai)i

∏

log(0.6060 * 0.4040) = -67.3

2/23/11	

10	

MLE Example

  Can we do any better?

  p(heads) = 0.5
 log(0.5060 * 0.5040) =-69.3

  p(heads) = 0.7
 log(0.7060 * 0.3040)=-69.5

€

likelihood(data) =
pθ (datai)i

∏

Expectation Maximization (EM)
  EM also tries to maximized the likelihood of the training data

  EM works without labeled training data, though!

  However, because we don’t have labeled data, we cannot calculate the
exact solution in closed form

model (Θ)

parameters

S → NP VP
S → VP
NP → Det A N
NP → NP PP
NP → PropN
A → ε
A → Adj A
PP → Prep NP
VP → V NP
VP → VP PP

0.9
0.1
0.5
0.3
0.2
0.6
0.4
1.0
0.7
0.3

parameter values

MLE
Training

EM
Training

Attempt to maximize training data

EM is a general framework

  Create an initial model, θ’
  Arbitrarily, randomly, or with a small set of training examples

  Use the model θ’ to obtain another model θ such that

 Σi log Pθ(datai) > Σi log Pθ’(datai)

  Let θ’ = θ and repeat the above step until reaching a local
maximum
  Guaranteed to find a better model after each iteration

Where else have you seen EM?

i.e. better models data
(increased log likelihood)

EM shows up all over the place

  Training HMMs (Baum-Welch algorithm)
  Learning probabilities for Bayesian networks
  EM-clustering
  Learning word alignments for language translation
  Learning Twitter friend network
  Genetics
  Finance
  Anytime you have a model and unlabeled data!

2/23/11	

11	

E and M steps: creating a better model

Expectation: Given the current model, figure out the expected probabilities of the
each example

Maximization: Given the probabilities of each of the examples, estimate a new
model, θc

p(x|θc)
What is the probability of each point belonging to
each cluster?

Just like maximum likelihood estimation, except we use fractional
counts instead of whole counts

What is the probability of sentence being
grammatical?

EM clustering

  We have some points in space

  We would like to put them into some
known number of groups (e.g. 2
groups/clusters)

  Soft-clustering: rather than explicitly
assigning a point to a group, we’ll
probabilistically assign it

P(red) = 0.75
P(blue) = 0.25

EM clustering
Model: mixture of Gaussians

Covariance determines
the shape of these contours

•  Fit these Gaussian densities to the data, one per cluster

E and M steps: creating a better model

Expectation: Given the current model, figure out the expected probabilities of the
data points to each cluster

Maximization: Given the probabilistic assignment of all the points, estimate a
new model, θc

p(x|θc) What is the current probability of each
point belonging to each cluster?

Do MLE of the parameters (i.e. Gaussians), but use
fractional counts based on probabilities (i.e. p(x | Θc)

2/23/11	

12	

EM example

Figure from Chris Bishop

EM example

Figure from Chris Bishop

Expectation: Given the current model, figure out the expected probabilities of the
each example

Maximization: Given the probabilities of each of the examples, estimate a new
model, θc

p(x|θc)

Just like maximum likelihood estimation, except we use fractional
counts instead of whole counts

What is the probability of sentence being grammatical?

EM for parsing (Inside-Outside algorithm) Expectation step

p(sentence)grammar

p(time flies like an arrow)grammar = ?

Note: This is the language modeling problem

2/23/11	

13	

Expectation step

p(time flies like an arrow)grammar = ?

S

NP
time

VP

V
flies

PP

P
like

NP

Det
an

N
 arrow

p(| S) = p(S → NP VP | S) * p(NP → time | NP)

* p(VP → V PP | VP)

* p(V → flies | V) * …

Most likely parse?

Expectation step

p(time flies like an arrow)grammar = ?

S

NP
time

VP

V
flies

PP

P
like

NP

Det
an

N
 arrow

p(| S)

S

NP VP

N
flies

V
like

NP

Det
an

N
 arrow

| S) + …
N
time

+ p(

Sum over all the possible parses!
Often, we really want: p(time flies like an arrow | S)

Expectation step

p(time flies like an arrow)grammar = ?

Sum over all the possible parses!
Often, we really want: p(time flies like an arrow | S)

how can we calculate this sum?

Expectation step

p(time flies like an arrow)grammar = ?

Sum over all the possible parses!
Often, we really want: p(time flies like an arrow | S)

CKY parsing except sum over
possible parses instead of max

2/23/11	

14	

Probabilistic CKY Parser

 Book the flight through Houston

S :.01, VP:.1,
Verb:.5
Nominal:.03
Noun:.1

Det:.6

Nominal:.15
Noun:.5

None

NP:.6*.6*.15
 =.054

VP:.5*.5*.054
 =.0135

S:.05*.5*.054
 =.00135

None

None

None

Prep:.2

NP:.16
PropNoun:.8

PP:1.0*.2*.16
 =.032

Nominal:
.5*.15*.032
=.0024

NP:.6*.6*
 .0024
 =.000864

S:.05*.5*
 .000864
 =.0000216

S:.03*.0135*
 .032
 =.00001296

S → VP PP 0.03

S → Verb NP 0.05

For any entry, sum
over the
possibilities!

Maximization step

  Calculate the probabilities of the grammar rules
using partial counts

€

P(α →β |α) =
count(α →β)
count(α)

MLE EM

?

Maximization step

S

NP
time

VP

V
flies

PP

P
like

NP

Det
an

N
 arrow

Say we’re trying to figure out VP -> V PP

MLE EM

count this as one occurrence
fractional count based on the sentence and
how likely the sentence is to be grammatical

€

p(VP →V PP | time flies like an arrow, S)

Maximization step

€

=
p(VP →V PP, time flies like an arrow |S)

p(time flies like an arrow |S)€

p(VP →V PP | time flies like an arrow, S)

def. of conditional
probability

€

=
p(VP →V PP)p(time VP |S) p(left - side | V) p(right - side | PP)

p(time flies like an arrow |S)

conditional independence
as specified by the PCFG

2/23/11	

15	

Maximization step

S

VP

V PP

time

flies like an arrow

€

p(VP →V PP)p(time VP |S) p(left - side | V) p(right - side | PP)
p(time flies like an arrow |S)

βVP(1,5) = p(flies like an arrow | VP)

αVP(1,5) = p(time VP today | S)

Inside & Outside Probabilities
S

NP
time

VP

VP NP
today

V
flies

PP

P
like

NP

Det
an

N
 arrow

“inside” the VP

“outside” the VP

The “inside” probabilities we can calculate
using a CKY-style, bottom-up approach

The “outside” probabilities we can calculate
using top-down approach (after we have the
“inside” probabilities

EM grammar induction

  The good:
 We learn a grammar
 At each step we’re guaranteed to increase (or keep the

same) the likelihood of the training data
  The bad

  Slow: O(m3n3), where m = sentence length and n = non-
terminals in the grammar

  Lot’s of local maxima
 Often have to use more non-terminals in the grammar than

are theoretically motivated (often ~3 times)
 Often non-terminals learned have no relation to traditional

constituents

But…

  If we bootstrap and start with a reasonable
grammar, we can often obtain very interesting
results

S → NP VP
S → VP
NP → Det A N
NP → NP PP
NP → PropN
A → ε
A → Adj A
PP → Prep NP
VP → V NP
VP → VP PP

0.9
0.1
0.5
0.3
0.2
0.6
0.4
1.0
0.7
0.3

English

Penn Grammar

2/23/11	

16	

Forward

Learning Latent Annotations

EM algorithm:

X1

X2
X7 X4

X5 X6 X3

He was right

.

  Brackets are known
  Base categories are known
  Only induce subcategories

Backward

Hierarchical refinement

Hierarchical Estimation Results

Model F1
Flat Training 87.3
Hierarchical Training 88.4

Refinement of the , tag

  Splitting all categories equally is wasteful:

2/23/11	

17	

Adaptive Splitting

  Want to split complex categories more
  Idea: split everything, roll back splits which were

least useful

Adaptive Splitting Results

Model F1
Previous 88.4
With 50% Merging 89.5

Number of Phrasal Subcategories Number of Lexical Subcategories

2/23/11	

18	

Final Results (Accuracy)

≤ 40 words
F1

all
F1

EN
G

Charniak&Johnson ‘05 (generative) 90.1 89.6

Split / Merge 90.6 90.1

G
ER

Dubey ‘05 76.3 -

Split / Merge 80.8 80.1

C
H

N

Chiang et al. ‘02 80.0 76.6

Split / Merge 86.3 83.4

Still higher numbers from reranking / self-training methods

Finding Word Alignments

… la maison … la maison bleue … la fleur …

… the house … the blue house … the flower …

•  In machine translation, we train from pairs of translated sentences
•  Often useful to know how the words align in the sentences
•  Use EM!

•  learn a model of P(french-word | english-word)

Finding Word Alignments

All word alignments equally likely

All P(french-word | english-word) equally likely

… la maison … la maison bleue … la fleur …

… the house … the blue house … the flower …

Finding Word Alignments

“la” and “the” observed to co-occur frequently,
so P(la | the) is increased.

… la maison … la maison bleue … la fleur …

… the house … the blue house … the flower …

2/23/11	

19	

Finding Word Alignments

“house” co-occurs with both “la” and “maison”, but
P(maison | house) can be raised without limit, to 1.0,
while P(la | house) is limited because of “the”

(pigeonhole principle)

… la maison … la maison bleue … la fleur …

… the house … the blue house … the flower …

Finding Word Alignments

settling down after another iteration

… la maison … la maison bleue … la fleur …

… the house … the blue house … the flower …

Finding Word Alignments

Inherent hidden structure revealed by EM training!
For details, see
 - “A Statistical MT Tutorial Workbook” (Knight, 1999).
 - 37 easy sections, final section promises a free beer.

 - “The Mathematics of Statistical Machine Translation”
 (Brown et al, 1993)
 - Software: GIZA++

… la maison … la maison bleue … la fleur …

… the house … the blue house … the flower …

Statistical Machine Translation

P(maison | house) = 0.411
P(maison | building) = 0.027
P(maison | manson) = 0.020
…

Estimating the model from training data

… la maison … la maison bleue … la fleur …

… the house … the blue house … the flower …

2/23/11	

20	

EM summary

  EM is a popular technique in NLP
  EM is useful when we have lots of unlabeled data

 we may have some labeled data
 or partially labeled data

  Broad range of applications
  Can be hard to get it right, though…

Discriminative Parse Reranking

S → NP VP
S → VP
NP → Det A N
NP → NP PP
NP → PropN
A → ε
A → Adj A
PP → Prep NP
VP → V NP
VP → VP PP

0.9
0.1
0.5
0.3
0.2
0.6
0.4
1.0
0.7
0.3

English

Grammar

CKY
best parse

Discriminative Parse Reranking

S → NP VP
S → VP
NP → Det A N
NP → NP PP
NP → PropN
A → ε
A → Adj A
PP → Prep NP
VP → V NP
VP → VP PP

0.9
0.1
0.5
0.3
0.2
0.6
0.4
1.0
0.7
0.3

English

Grammar

CKY

best parse
2nd best parse
3rd best parse
4th best parse
5th best parse
….

How could we do this?
How might this help us?

Parse Reranking

sentence N-Best
Parse Trees PCFG Parser

 Parse Tree
 Feature
 Extractor

 Parse Tree
Descriptions

 Discriminative
 Parse Tree
 Classifier

 Best
Parse Tree

2/23/11	

21	

Sample Parse Tree Features

  Probability of the parse from the PCFG.
  The number of parallel conjuncts.

 “the bird in the tree and the squirrel on the ground”
 “the bird and the squirrel in the tree”

  The degree to which the parse tree is right
branching.
 English parses tend to be right branching (cf. parse of

“Book the flight through Houston”)
  Frequency of various tree fragments, i.e. specific

combinations of 2 or 3 rules.

2-Stage Reranking Approach

  Adapt the PCFG parser to produce an N-best list of
the most probable parses in addition to the most-
likely one.

  Extract from each of these parses, a set of global
features that help determine if it is a good parse
tree.

  Train a discriminative classifier (e.g. logistic
regression) using the best parse in each N-best list
as positive and others as negative.

Evaluation of Reranking

  Reranking is limited by oracle accuracy, i.e. the
accuracy that results when an omniscient oracle
picks the best parse from the N-best list.

  Typical current oracle accuracy is around F1=97%
  Reranking can generally improve test accuracy of

current PCFG models a percentage point or two

Other Discriminative Parsing

  There are also parsing models that move from
generative PCFGs to a fully discriminative model,
e.g. max margin parsing (Taskar et al., 2004).

  There is also a recent model that efficiently reranks
all of the parses in the complete (compactly-
encoded) parse forest, avoiding the need to
generate an N-best list (forest reranking, Huang,
2008).

2/23/11	

22	

Human Parsing

  How do humans do it?

  How might you try and figure it out computationally/
experimentally?

Human parsing

  Read these sentences
  Which one was fastest/slowest?

John put the dog in the pen with a lock.

John carried the dog in the pen with a bone in the car.

John liked the dog in the pen with a bone.

Human Parsing

  Computational parsers can be used to predict human
reading time as measured by tracking the time taken to
read each word in a sentence.

  Psycholinguistic studies show that words that are more
probable given the preceding lexical and syntactic
context are read faster.
  John put the dog in the pen with a lock.
  John carried the dog in the pen with a bone in the car.
  John liked the dog in the pen with a bone.

  Modeling these effects requires an incremental statistical
parser that incorporates one word at a time into a
continuously growing parse tree.

Human Parsing

  Computational parsers can be used to predict human
reading time as measured by tracking the time taken to
read each word in a sentence.

  Psycholinguistic studies show that words that are more
probable given the preceding lexical and syntactic
context are read faster.
  John put the dog in the pen with a lock.
  John put the dog in the pen with a bone in the car.
  John liked the dog in the pen with a bone.

  Modeling these effects requires an incremental statistical
parser that incorporates one word at a time into a
continuously growing parse tree.

2/23/11	

23	

Garden Path Sentences

  People are confused by sentences that seem to have a
particular syntactic structure but then suddenly violate
this structure, so the listener is “lead down the garden
path”.
  The horse raced past the barn fell.

  vs. The horse raced past the barn broke his leg.

  The complex houses married students.
  The old man the sea.
  While Anna dressed the baby spit up on the bed.

  Incremental computational parsers can try to predict
and explain the problems encountered parsing such
sentences.

