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What is the internet? 

  http://www.youtube.com/watch?v=JUs7iG1mNjI 

NATURAL LANGUAGE 
LEARNING: EM 
David Kauchak 
CS159 – Spring 2011 

some slides adapted from 
Dan Klein 

Admin 

  My laptop 
  Assignment 2 grading 
  Assignment 3 out 

 Due Friday at 6pm 
 packages: submit code in package structure 

  in code: 
  nlp/parser/*.java 

  Read the book! 

Parsing other languages 

  http://nlp.stanford.edu/software/lex-parser.shtml 
  German 
  Chinese 
  Arabic 

  Most parsers can be retrained as long as you have a Treebank 
  Czech 
  Korean 

  http://www.cis.upenn.edu/~xtag/koreantag/ 
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Learning good splits:  
Latent Variable Grammars 

Parse Tree  
Sentence Parameters  

... 

Derivations 

Refinement of the DT tag 

DT 

DT-1 DT-2 DT-3 DT-4 

Learned Splits 

  Proper Nouns (NNP): 

  Personal pronouns (PRP): 

NNP-14 Oct. Nov. Sept. 
NNP-12 John Robert James 
NNP-2 J. E. L. 
NNP-1 Bush Noriega Peters 

NNP-15 New San Wall 
NNP-3 York Francisco Street 

PRP-0 It He I 
PRP-1 it he they 
PRP-2 it them him 

  Relative adverbs (RBR): 

  Cardinal Numbers (CD): 

RBR-0 further lower higher 
RBR-1 more less More 
RBR-2 earlier Earlier later 

CD-7 one two Three 
CD-4 1989 1990 1988 
CD-11 million billion trillion 
CD-0 1 50 100 
CD-3 1 30 31 
CD-9 78 58 34 

Learned Splits 
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A step back: data 

http://hijinksensue.com/2011/02/15/culturally-biased/ 

Why do we need computers for 
dealing with natural text? 

Web is just the start… 

e-mail 

corporate 
databases 

http://royal.pingdom.com/2010/01/22/internet-2009-in-numbers/ 

27 million tweets a day 

Blogs: 126 million different blogs 

247 billion e-mails a day 

Corpora examples 

  Linguistic Data Consortium 
 http://www.ldc.upenn.edu/Catalog/byType.jsp 

  Dictionaries  
 WordNet – 206K English words 
 CELEX2 – 365K German words 

  Monolingual text 
 Gigaword corpus 

 4M documents (mostly news articles) 
 1.7 trillion words 
 11GB of data (4GB compressed) 
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Corpora examples 

  Monolingual text continued 
 Enron e-mails 

 517K e-mails 
 Twitter 
 Chatroom 
 Many non-English resources 

  Parallel data 
 ~10M sentences of Chinese-English and Arabic-English 
 Europarl 

 ~1.5M sentences English with 10 different languages 

Corpora examples 

  Annotated 
  Brown Corpus 

  1M words with part of speech tag 

  Penn Treebank 
  1M words with full parse trees annotated 

 Other Treebanks 
  Treebank refers to a corpus annotated with trees (usually 

syntactic) 
  Chinese: 51K sentences 
  Arabic: 145K words 
  many other languages… 
  BLIPP: 300M words (automatically annotated) 

Corpora examples 

  Many others… 
 Spam and other text classification 
 Google n-grams 

 2006 (24GB compressed!) 
 13M unigrams 
 300M bigrams 
 ~1B 3,4 and 5-grams 

 Speech 
 Video (with transcripts) 

Problem 

e-mail 

247 billion e-mails a day 

web 

1 trillion web pages 

Penn Treebank 
1M words with full parse 
trees annotated 

 

Unlabeled Labeled 
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Learning a grammar 

Learning/ 
Training 

S → NP VP 
S → VP 
NP → Det A N 
NP → NP PP 
NP → PropN 
A → ε 
A → Adj A 
PP → Prep NP 
VP → V NP 
VP → VP PP 

0.9 
0.1 
0.5 
0.3 
0.2 
0.6 
0.4 
1.0 
0.7 
0.3 

English …
 

€ 

P(α →β |α) =
count(α →β)
count(α)

Parsed sentences Grammar 

Parsing other data sources 

web 

1 trillion web pages 

What if we wanted to parse 
sentences from the web? 

Idea 1 

Learning/ 
Training 

S → NP VP 
S → VP 
NP → Det A N 
NP → NP PP 
NP → PropN 
A → ε 
A → Adj A 
PP → Prep NP 
VP → V NP 
VP → VP PP 

0.9 
0.1 
0.5 
0.3 
0.2 
0.6 
0.4 
1.0 
0.7 
0.3 

English …
 

€ 

P(α →β |α) =
count(α →β)
count(α)

Penn Treebank Penn Grammar 

Idea 1 

S → NP VP 
S → VP 
NP → Det A N 
NP → NP PP 
NP → PropN 
A → ε 
A → Adj A 
PP → Prep NP 
VP → V NP 
VP → VP PP 

0.9 
0.1 
0.5 
0.3 
0.2 
0.6 
0.4 
1.0 
0.7 
0.3 

English 

Penn Grammar 

web 

1 trillion web pages 

How well will this work? 
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Parsing other data sources 

What if we wanted to parse 
“sentences” from twitter? 

27 million tweets a day 

Idea 1 

S → NP VP 
S → VP 
NP → Det A N 
NP → NP PP 
NP → PropN 
A → ε 
A → Adj A 
PP → Prep NP 
VP → V NP 
VP → VP PP 

0.9 
0.1 
0.5 
0.3 
0.2 
0.6 
0.4 
1.0 
0.7 
0.3 

English 

Penn Grammar 

27 million tweets a day 

Probably not going to work very well 

Ideas? 

Idea 2 

Learning/ 
Training 

S → NP VP 
S → VP 
NP → Det A N 
NP → NP PP 
NP → PropN 
A → ε 
A → Adj A 
PP → Prep NP 
VP → V NP 
VP → VP PP 

0.9 
0.1 
0.5 
0.3 
0.2 
0.6 
0.4 
1.0 
0.7 
0.3 

English 

€ 

P(α →β |α) =
count(α →β)
count(α)

Pseudo-Twitter 
grammar 

Idea 2 

S → NP VP 
S → VP 
NP → Det A N 
NP → NP PP 
NP → PropN 
A → ε 
A → Adj A 
PP → Prep NP 
VP → V NP 
VP → VP PP 

0.9 
0.1 
0.5 
0.3 
0.2 
0.6 
0.4 
1.0 
0.7 
0.3 

English 

Pseudo-Twitter 
grammer 

27 million tweets a day 

* 

Often, this improves the parsing performance 
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Idea 3 

S → NP VP 
S → VP 
NP → Det A N 
NP → NP PP 
NP → PropN 
A → ε 
A → Adj A 
PP → Prep NP 
VP → V NP 
VP → VP PP 

0.9 
0.1 
0.5 
0.3 
0.2 
0.6 
0.4 
1.0 
0.7 
0.3 

English 

Pseudo-Twitter 
grammer 

27 million tweets a day 

* 

Learning/ 
Training € 

P(α →β |α) =
count(α →β)
count(α)

Idea 3: some things to think about 

  How many iterations should we do it for? 
 When should we stop? 

  Will we always get better? 

  What does “get better” mean? 

Idea 3: some things to think about 

  How many iterations should we do it for? 
 We should keep iterating as long as we improve 

  Will we always get better? 
 Not guaranteed for most measures 

  What does “get better” mean? 
 Use our friend the development set 
 Does it increase the likelihood of the training data 

Idea 4 

What if we don’t have any parsed data? 

S → NP VP 
S → VP 
NP → Det A N 
NP → NP PP 
NP → PropN 
A → ε 
A → Adj A 
PP → Prep NP 
VP → V NP 
VP → VP PP 

0.9 
0.1 
0.5 
0.3 
0.2 
0.6 
0.4 
1.0 
0.7 
0.3 

English 

Penn Grammar 

27 million tweets a day 
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Idea 4 

S → NP VP 
S → VP 
NP → Det A N 
NP → NP PP 
NP → PropN 
A → ε 
A → Adj A 
PP → Prep NP 
VP → V NP 
VP → VP PP 

? 
? 
? 
? 
? 
? 
? 
? 
? 
? 

English 

Randomly initialized 
grammar 

27 million tweets a day 

Pseudo-random 

Idea 4 

Learning/ 
Training 

S → NP VP 
S → VP 
NP → Det A N 
NP → NP PP 
NP → PropN 
A → ε 
A → Adj A 
PP → Prep NP 
VP → V NP 
VP → VP PP 

0.9 
0.1 
0.5 
0.3 
0.2 
0.6 
0.4 
1.0 
0.7 
0.3 

English 

€ 

P(α →β |α) =
count(α →β)
count(α)

Pseudo-Twitter 
grammar 

Pseudo-random 

Idea 4 

S → NP VP 
S → VP 
NP → Det A N 
NP → NP PP 
NP → PropN 
A → ε 
A → Adj A 
PP → Prep NP 
VP → V NP 
VP → VP PP 

0.9 
0.1 
0.5 
0.3 
0.2 
0.6 
0.4 
1.0 
0.7 
0.3 

English 

Pseudo-Twitter 
grammer 

27 million tweets a day 

* 

Learning/ 
Training € 

P(α →β |α) =
count(α →β)
count(α)

Idea 4 

  Viterbi approximation of EM 
 Fast 
 Works ok (but we can do better) 
 Easy to get biased based on initial randomness 

  What information is the Viterbi approximation 
throwing away? 
 We’re somewhat randomly picking the best parse 
 We’re ignoring all other possible parses 
 Real EM takes these into account 
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A digression 

Learning/ 
Training 

S → NP VP 
S → VP 
NP → Det A N 
NP → NP PP 
NP → PropN 
A → ε 
A → Adj A 
PP → Prep NP 
VP → V NP 
VP → VP PP 

0.9 
0.1 
0.5 
0.3 
0.2 
0.6 
0.4 
1.0 
0.7 
0.3 

English …
 

€ 

P(α →β |α) =
count(α →β)
count(α)

Parsed sentences Grammar 

Why is this called Maximum Likelihood Estimation (MLE)? 

MLE 

  Maximum likelihood estimation picks the values for 
the model parameters that maximize the likelihood 
of the training data 

S → NP VP 
S → VP 
NP → Det A N 
NP → NP PP 
NP → PropN 
A → ε 
A → Adj A 
PP → Prep NP 
VP → V NP 
VP → VP PP 

0.9 
0.1 
0.5 
0.3 
0.2 
0.6 
0.4 
1.0 
0.7 
0.3 

model (Θ) 

parameters parameter 
values 

MLE 

  Maximum likelihood estimation picks the values for 
the model parameters that maximize the likelihood 
of the training data 

model (Θ) 

parameters 

S → NP VP 
S → VP 
NP → Det A N 
NP → NP PP 
NP → PropN 
A → ε 
A → Adj A 
PP → Prep NP 
VP → V NP 
VP → VP PP 

0.9 
0.1 
0.5 
0.3 
0.2 
0.6 
0.4 
1.0 
0.7 
0.3 

parameter values 

€ 

MLE(data) = argmax
θ

pθ (data)

If this is what you want to optimize, 
you can do NO BETTER than MLE! 

€ 

= argmax
θ

log( pθ (datai)i
∑ )

€ 

= argmax
θ

pθ (datai)i
∏

MLE example 

  You flip a coin 100 times.  60 times you get heads. 
  What is the MLE for heads? 

  p(head) = 0.60 

  What is the likelihood of the data under this model 
(each coin flip is a data point)? 

€ 

likelihood(data) =
pθ (datai)i

∏

log(0.6060 * 0.4040) = -67.3 
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MLE Example 

  Can we do any better? 

  p(heads) = 0.5 
 log(0.5060 * 0.5040) =-69.3 

  p(heads) = 0.7 
 log(0.7060 * 0.3040)=-69.5  

€ 

likelihood(data) =
pθ (datai)i

∏

Expectation Maximization (EM) 
  EM also tries to maximized the likelihood of the training data 

  EM works without labeled training data, though! 

  However, because we don’t have labeled data, we cannot calculate the 
exact solution in closed form 

model (Θ) 

parameters 

S → NP VP 
S → VP 
NP → Det A N 
NP → NP PP 
NP → PropN 
A → ε 
A → Adj A 
PP → Prep NP 
VP → V NP 
VP → VP PP 

0.9 
0.1 
0.5 
0.3 
0.2 
0.6 
0.4 
1.0 
0.7 
0.3 

parameter values 

MLE 
Training 

EM 
Training 

Attempt to maximize training data 

EM is a general framework 

  Create an initial model, θ’  
  Arbitrarily, randomly, or with a small set of training examples 

  Use the model θ’ to obtain another model θ such that 

 Σi log Pθ(datai) > Σi log Pθ’(datai) 

  Let θ’ = θ and repeat the above step until reaching a local 
maximum 
  Guaranteed to find a better model after each iteration 

Where else have you seen EM? 

i.e. better models data 
(increased log likelihood) 

EM shows up all over the place 

  Training HMMs (Baum-Welch algorithm) 
  Learning probabilities for Bayesian networks 
  EM-clustering 
  Learning word alignments for language translation 
  Learning Twitter friend network 
  Genetics 
  Finance 
  Anytime you have a model and unlabeled data! 
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E and M steps: creating a better model 

Expectation: Given the current model, figure out the expected probabilities of the 
each example 

Maximization: Given the probabilities of each of the examples, estimate a new 
model, θc  

p(x|θc) 
What is the probability of each point belonging to 
each cluster? 

Just like maximum likelihood estimation, except we use fractional 
counts instead of whole counts 

What is the probability of sentence being 
grammatical? 

EM clustering 

  We have some points in space 

  We would like to put them into some 
known number of groups (e.g. 2 
groups/clusters) 

  Soft-clustering: rather than explicitly 
assigning a point to a group, we’ll 
probabilistically assign it 

P(red) = 0.75 
P(blue) = 0.25 

EM clustering 
Model: mixture of Gaussians 

Covariance determines  
the shape of these contours 

•  Fit these Gaussian densities to the data, one per cluster 

E and M steps: creating a better model 

Expectation: Given the current model, figure out the expected probabilities of the 
data points to each cluster 

Maximization: Given the probabilistic assignment of all the points, estimate a 
new model, θc  

p(x|θc) What is the current probability of each 
point belonging to each cluster? 

Do MLE of the parameters (i.e. Gaussians), but use 
fractional counts based on probabilities (i.e. p(x | Θc) 
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EM example  

Figure from Chris Bishop 

EM example  

Figure from Chris Bishop 

Expectation: Given the current model, figure out the expected probabilities of the 
each example 

Maximization: Given the probabilities of each of the examples, estimate a new 
model, θc  

p(x|θc) 

Just like maximum likelihood estimation, except we use fractional 
counts instead of whole counts 

What is the probability of sentence being grammatical? 

EM for parsing (Inside-Outside algorithm) Expectation step 

p(sentence)grammar 

p(time flies like an arrow)grammar = ? 

Note: This is the language modeling problem 
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Expectation step 

p(time flies like an arrow)grammar = ? 

S 

NP 
time 

VP 

V 
flies 

PP 

P 
like 

NP 

Det 
an 

N    
 arrow 

p( | S) = p(S → NP VP | S) * p(NP → time | NP) 

* p(VP → V PP | VP)  

* p(V → flies | V) * … 

Most likely parse? 

Expectation step 

p(time flies like an arrow)grammar = ? 

S 

NP 
time 

VP 

V 
flies 

PP 

P 
like 

NP 

Det 
an 

N    
 arrow 

p( | S) 

S 

NP VP 

N 
flies 

V 
like 

NP 

Det 
an 

N    
 arrow 

| S)  + … 
N 
time 

+ p( 

Sum over all the possible parses! 
Often, we really want: p(time flies like an arrow | S) 

Expectation step 

p(time flies like an arrow)grammar = ? 

Sum over all the possible parses! 
Often, we really want: p(time flies like an arrow | S) 

how can we calculate this sum? 

Expectation step 

p(time flies like an arrow)grammar = ? 

Sum over all the possible parses! 
Often, we really want: p(time flies like an arrow | S) 

CKY parsing except sum over 
possible parses instead of max 
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Probabilistic CKY Parser 

  Book       the        flight    through  Houston 

S :.01, VP:.1,  
Verb:.5  
Nominal:.03 
Noun:.1 

Det:.6 

Nominal:.15 
Noun:.5 

None 

NP:.6*.6*.15 
     =.054 

VP:.5*.5*.054 
     =.0135 

S:.05*.5*.054 
     =.00135 

None 

None 

None 

Prep:.2 

NP:.16 
PropNoun:.8 

PP:1.0*.2*.16 
       =.032 

Nominal: 
.5*.15*.032 
=.0024 

NP:.6*.6* 
       .0024 
     =.000864 

S:.05*.5* 
     .000864 
   =.0000216 

S:.03*.0135* 
    .032 
  =.00001296 

S → VP PP  0.03 

S → Verb NP 0.05 

For any entry, sum 
over the 
possibilities! 

Maximization step 

  Calculate the probabilities of the grammar rules 
using partial counts 

€ 

P(α →β |α) =
count(α →β)
count(α)

MLE EM 

? 

Maximization step 

S 

NP 
time 

VP 

V 
flies 

PP 

P 
like 

NP 

Det 
an 

N    
 arrow 

Say we’re trying to figure out VP -> V PP 

MLE EM 

count this as one occurrence 
fractional count based on the sentence and 
how likely the sentence is to be grammatical 

€ 

p(VP →V  PP |  time flies like an arrow, S)

Maximization step 

€ 

=
p(VP →V  PP,  time flies like an arrow |S)

p(time flies like an arrow |S)€ 

p(VP →V  PP |  time flies like an arrow, S)

def. of conditional 
probability 

€ 

=
p(VP →V  PP)p(time VP |S) p(left - side | V) p(right - side | PP)

p(time flies like an arrow |S)

conditional independence 
as specified by the PCFG 
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Maximization step 

S 

VP 

V PP 

time              

flies like an arrow 

€ 

p(VP →V  PP)p(time VP |S) p(left - side | V) p(right - side | PP)
p(time flies like an arrow |S)

βVP(1,5) = p(flies like an arrow | VP) 

αVP(1,5) = p(time VP today | S) 

Inside & Outside Probabilities  
S 

NP 
time 

VP 

VP NP 
today 

V 
flies 

PP 

P 
like 

NP 

Det 
an 

N    
 arrow 

“inside” the VP 

“outside” the VP 

The “inside” probabilities we can calculate 
using a CKY-style, bottom-up approach 

The “outside” probabilities we can calculate 
using top-down approach (after we have the 
“inside” probabilities 

EM grammar induction 

  The good: 
 We learn a grammar 
 At each step we’re guaranteed to increase (or keep the 

same) the likelihood of the training data 
  The bad 

  Slow: O(m3n3), where m = sentence length and n = non-
terminals in the grammar 

  Lot’s of local maxima 
 Often have to use more non-terminals in the grammar than 

are theoretically motivated (often ~3 times) 
 Often non-terminals learned have no relation to traditional 

constituents 

But… 

  If we bootstrap and start with a reasonable 
grammar, we can often obtain very interesting 
results 

S → NP VP 
S → VP 
NP → Det A N 
NP → NP PP 
NP → PropN 
A → ε 
A → Adj A 
PP → Prep NP 
VP → V NP 
VP → VP PP 

0.9 
0.1 
0.5 
0.3 
0.2 
0.6 
0.4 
1.0 
0.7 
0.3 

English 

Penn Grammar 
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Forward 

Learning Latent Annotations 

EM algorithm: 

X1 

X2 
X7 X4 

X5 X6 X3 

He was right 

. 

  Brackets are known 
  Base categories are known 
  Only induce subcategories 

Backward 

Hierarchical refinement 

Hierarchical Estimation Results 

Model F1 
Flat Training 87.3 
Hierarchical Training 88.4 

Refinement of the , tag 

  Splitting all categories equally is wasteful: 
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Adaptive Splitting 

  Want to split complex categories more 
  Idea: split everything, roll back splits which were 

least useful 

Adaptive Splitting Results 

Model F1 
Previous 88.4 
With 50% Merging 89.5 

Number of Phrasal Subcategories Number of Lexical Subcategories 
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Final Results (Accuracy) 

≤ 40 words 
F1 

all  
F1 

EN
G

 

Charniak&Johnson ‘05 (generative) 90.1 89.6 

Split / Merge 90.6 90.1 

G
ER

 

Dubey ‘05 76.3 - 

Split / Merge 80.8 80.1 

C
H

N
 

Chiang et al. ‘02 80.0 76.6 

Split / Merge 86.3 83.4 

Still higher numbers from reranking / self-training methods 

Finding Word Alignments 

… la maison … la maison bleue … la fleur … 

… the house … the blue house … the flower … 

•  In machine translation, we train from pairs of translated sentences 
•  Often useful to know how the words align in the sentences 
•  Use EM! 

•  learn a model of P(french-word | english-word) 

Finding Word Alignments 

All word alignments equally likely 

All P(french-word | english-word) equally likely 

… la maison … la maison bleue … la fleur … 

… the house … the blue house … the flower … 

Finding Word Alignments 

“la” and “the” observed to co-occur frequently, 
so P(la | the) is increased. 

… la maison … la maison bleue … la fleur … 

… the house … the blue house … the flower … 
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Finding Word Alignments 

“house” co-occurs with both “la” and “maison”, but 
P(maison | house) can be raised without limit,  to 1.0, 
while P(la | house) is limited because of “the” 

(pigeonhole principle) 

… la maison … la maison bleue … la fleur … 

… the house … the blue house … the flower … 

Finding Word Alignments 

settling down after another iteration 

… la maison … la maison bleue … la fleur … 

… the house … the blue house … the flower … 

Finding Word Alignments 

Inherent hidden structure revealed by EM training! 
For details, see  
    - “A Statistical MT Tutorial Workbook” (Knight, 1999). 
           - 37 easy sections, final section promises a free beer. 

    - “The Mathematics of Statistical Machine Translation” 
        (Brown et al, 1993) 
    - Software:  GIZA++ 

… la maison … la maison bleue … la fleur … 

… the house … the blue house … the flower … 

Statistical Machine Translation 

P(maison | house ) = 0.411 
P(maison | building) = 0.027 
P(maison | manson) = 0.020 
… 

Estimating the model from training data 

… la maison … la maison bleue … la fleur … 

… the house … the blue house … the flower … 
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EM summary 

  EM is a popular technique in NLP 
  EM is useful when we have lots of unlabeled data 

 we may have some labeled data 
 or partially labeled data 

  Broad range of applications 
  Can be hard to get it right, though… 

Discriminative Parse Reranking 

S → NP VP 
S → VP 
NP → Det A N 
NP → NP PP 
NP → PropN 
A → ε 
A → Adj A 
PP → Prep NP 
VP → V NP 
VP → VP PP 

0.9 
0.1 
0.5 
0.3 
0.2 
0.6 
0.4 
1.0 
0.7 
0.3 

English 

Grammar 

CKY 
best parse 

Discriminative Parse Reranking 

S → NP VP 
S → VP 
NP → Det A N 
NP → NP PP 
NP → PropN 
A → ε 
A → Adj A 
PP → Prep NP 
VP → V NP 
VP → VP PP 

0.9 
0.1 
0.5 
0.3 
0.2 
0.6 
0.4 
1.0 
0.7 
0.3 

English 

Grammar 

CKY 

best parse 
2nd best parse 
3rd best parse 
4th best parse 
5th best parse 
…. 

How could we do this? 
How might this help us? 

Parse Reranking 

sentence      N-Best 
Parse Trees    PCFG Parser   

      Parse Tree 
        Feature 
     Extractor   

 Parse Tree 
Descriptions 

  Discriminative  
     Parse Tree 
      Classifier 

      Best           
Parse Tree 
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Sample Parse Tree Features 

  Probability of the parse from the PCFG. 
  The number of parallel conjuncts. 

 “the bird in the tree and the squirrel on the ground” 
 “the bird and the squirrel in the tree” 

  The degree to which the parse tree is right 
branching. 
 English parses tend to be right branching (cf. parse of 

“Book the flight through Houston”) 
  Frequency of various tree fragments, i.e. specific 

combinations of 2 or 3 rules. 

2-Stage Reranking Approach 

  Adapt the PCFG parser to produce an N-best list of 
the most probable parses in addition to the most-
likely one. 

  Extract from each of these parses, a set of global 
features that help determine if it is a good parse 
tree. 

  Train a discriminative classifier (e.g. logistic 
regression) using the best parse in each N-best list 
as positive and others as negative.    

Evaluation of Reranking 

  Reranking is limited by oracle accuracy, i.e. the 
accuracy that results when an omniscient oracle 
picks the best parse from the N-best list.  

  Typical current oracle accuracy is around F1=97%  
  Reranking can generally improve test accuracy of 

current PCFG models a percentage point or two 

Other Discriminative Parsing 

  There are also parsing models that move from 
generative PCFGs to a fully discriminative model, 
e.g. max margin parsing (Taskar et al., 2004).  

  There is also a recent model that efficiently reranks 
all of the parses in the complete (compactly-
encoded) parse forest, avoiding the need to 
generate an N-best list (forest reranking, Huang, 
2008). 
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Human Parsing 

  How do humans do it? 

  How might you try and figure it out computationally/
experimentally? 

Human parsing 

  Read these sentences 
  Which one was fastest/slowest? 

John put the dog in the pen with a lock. 

John carried the dog in the pen with a bone in the car. 

John liked the dog in the pen with a bone. 

Human Parsing 

  Computational parsers can be used to predict human 
reading time as measured by tracking the time taken to 
read each word in a sentence. 

  Psycholinguistic studies show that words that are more 
probable given the preceding lexical and syntactic 
context are read faster. 
  John put the dog in the pen with a lock. 
  John carried the dog in the pen with a bone in the car. 
  John liked the dog in the pen with a bone. 

  Modeling these effects requires an incremental statistical 
parser that incorporates one word at a time into a 
continuously growing parse tree. 

Human Parsing 

  Computational parsers can be used to predict human 
reading time as measured by tracking the time taken to 
read each word in a sentence. 

  Psycholinguistic studies show that words that are more 
probable given the preceding lexical and syntactic 
context are read faster. 
  John put the dog in the pen with a lock. 
  John put the dog in the pen with a bone in the car. 
  John liked the dog in the pen with a bone. 

  Modeling these effects requires an incremental statistical 
parser that incorporates one word at a time into a 
continuously growing parse tree. 
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Garden Path Sentences 

  People are confused by sentences that seem to have a 
particular syntactic structure but then suddenly violate 
this structure, so the  listener is “lead down the garden 
path”. 
  The horse raced past the barn fell. 

  vs. The horse raced past the barn broke his leg. 

  The complex houses married students. 
  The old man the sea. 
  While Anna dressed the baby spit up on the bed. 

  Incremental computational parsers can try to predict 
and explain the problems encountered parsing such 
sentences. 


