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Hand video 

  http://www.youtube.com/watch?v=-KxjVlaLBmk 

PARSING 3 
David Kauchak 
CS159 – Spring 2011 

some slides adapted from 
Dan Klein 

Admin 

  Assignment 3 out 
 Due Friday at 6pm 

  How are things going? 
  Where we’ve been 

  Where we’re going 

Parsing evaluation 

  You’ve constructed a parser 
  You want to know how good it is 
  Ideas? 
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Parsing evaluation 

  Learn a model using the training set 
  Parse the test set without looking at the “correct” 

trees 
  Compare our generated parse tree to the “correct” 

tree 

Treebank 

Train Dev Test 

Comparing trees 

Correct Tree T Computed Tree P 

Ideas? 

I eat sushi with tuna 

PRP 

NP 

V N IN N 

PP 

NP 

VP 

S 

I eat sushi with tuna 

PRP 

NP 

V N IN 

PP NP 

VP 

S 

N 

S 

Comparing trees 

  Idea 1: see if the trees match exactly 
 Problems? 

 Will have a low number of matches (people often disagree) 
 Doesn’t take into account getting it almost right 

  Idea 2: compare the constituents 

Comparing trees 
Correct Tree T Computed Tree P 

I eat sushi with tuna 

PRP 

NP 

V N IN N 

PP 

NP 

VP 

S 

I eat sushi with tuna 

PRP 

NP 

V N IN 

PP NP 

VP 

S 

How can we turn this into a score? 
How many constituents match? 

N 

S 



2/21/11	  

3	  

Evaluation measures 

  Precision 

  Recall 

  F1 

# of correct constituents 

# of constituents in the computed tree 

# of correct constituents 

# of constituents in the correct tree 

2 * Precision * Recall 

Precision + Recall 

Comparing trees 
Correct Tree T Computed Tree P 

I eat sushi with tuna 

PRP 

NP 

V N IN N 

PP 

NP 

VP 

S 

# Constituents: 11 # Constituents: 10 # Correct Constituents: 9 

Precision: Recall: F1: 9/11 9/10 0.857 

I eat sushi with tuna 

PRP 

NP 

V N IN 

PP NP 

VP 

S 

N 

S 

Parsing evaluation 

  Corpus: Penn Treebank, WSJ 

  Parsing has been fairly standardized to allow for easy 
comparison between systems 

Training: sections 02-21 
Development: section 22 (here, first 20 files) 
Test: section 23 

Treebank PCFGs 

  Use PCFGs for broad coverage parsing 
  Can take a grammar right off the trees (doesn’t work well): 

ROOT → S     

S → NP VP .     

NP → PRP     

VP → VBD ADJP    

….. 

Model F1 

Baseline 72.0 
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Generic PCFG Limitations 

  PCFGs do not use any information about where the 
current constituent is in the tree 

  PCFGs do not rely on specific words or concepts, only 
general structural disambiguation is possible (e.g. 
prefer to attach PPs to Nominals) 

  MLE estimates are not always the best 

Conditional Independence? 

  Not every NP expansion can fill every NP slot 
  A grammar with symbols like “NP” won’t be context-free 
  Statistically, conditional independence too strong 

Non-Independence 

  Independence assumptions are often too strong. 

  Example: the expansion of an NP is highly dependent on the parent 
of the NP (i.e., subjects vs. objects). 

  Also: the subject and object expansions are correlated 

All NPs NPs under S NPs under VP 

Grammar Refinement 

  PCFG would treat these two NPs the same… but they’re not! 
  We can’t exchange them:  “the noise heard she” 
  Idea: expand/refine our grammar 
  Challenges: 

  Must refine in ways that facilitate disambiguation 
  Too much refinement -> sparsity problems 
  To little -> can’t discriminate (PCFG) 
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Grammar Refinement 

Ideas? 

Grammar Refinement 

  Structure Annotation [Johnson ’98, Klein&Manning ’03] 
  Differentiate constituents based on their local context 

  Lexicalization [Collins ’99, Charniak ’00] 
  Differentiate constituents based on the spanned words 

  Constituent splitting [Matsuzaki et al. 05, Petrov et al. ’06] 
  Cluster/group words into sub-constituents 

Less independence 

PRP 

NP 

V N IN 

PP 

NP 

VP 

S 

I eat sushi with tuna 

N 

S -> NP VP 
NP -> PRP 
PRP -> I 
VP -> V NP 
V -> eat 
NP -> N PP 
N -> sushi 
PP -> IN N 
IN -> with 
N -> tuna 

We’re making a strong 
independence assumption here! 

Markovization 

  Except for the root node, every node in a parse 
tree has: 
 A vertical history/context 
 A horizontal history/context 

NP 

NP 

VP 

S 

NP VBD 

Traditional PCFGs use the full horizontal context and 
a vertical context of 1 
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Vertical Markovization 

  Vertical Markov order: rewrites depend on past k 
ancestor nodes. 

  Order 1 is most common: aka parent annotation 

Order 1 Order 2 

Allows us to make finer grained 
distinctions 

^S 

^VP 

Vertical Markovization 

F1 performance # of non-terminals 

Horizontal Markovization 

Order 1 Order ∞ 

  Horizontal Markov order: rewrites depend on past k 
ancestor nodes 

  Order 1 is most common: condition on a single sibling 
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Horizontal Markovization 

F1 performance # of non-terminals 

Problems with PCFGs 

  What’s different between basic PCFG scores here? 

Example of Importance of 
Lexicalization 

  A general preference for attaching PPs to NPs 
rather than VPs can be learned by a vanilla PCFG. 

  But the desired preference can depend on specific 
words. 

27 

S → NP VP 
S → VP 
NP → Det A N 
NP → NP PP 
NP → PropN 
A → ε 
A → Adj A 
PP → Prep NP 
VP → V NP 
VP → VP PP 

0.9 
0.1 
0.5 
0.3 
0.2 
0.6 
0.4 
1.0 
0.7 
0.3 

English 

PCFG  
Parser 

S 

NP           VP 

John       V     NP          PP 

put    the dog  in the pen 

John put the dog in the pen. 

28 

Example of Importance of 
Lexicalization 

  A general preference for attaching PPs to NPs 
rather than VPs can be learned by a vanilla PCFG. 

  But the desired preference can depend on specific 
words. 

S → NP VP 
S → VP 
NP → Det A N 
NP → NP PP 
NP → PropN 
A → ε 
A → Adj A 
PP → Prep NP 
VP → V NP 
VP → VP PP 

0.9 
0.1 
0.5 
0.3 
0.2 
0.6 
0.4 
1.0 
0.7 
0.3 

English 

PCFG  
Parser 

S 

NP           VP 

John       V     NP  

put    the dog  in the pen X 
John put the dog in the pen. 
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Lexicalized Trees 

How could we lexicalize 
the grammar/tree? 

Lexicalized Trees 

  Add “headwords” to 
each phrasal node 
  Syntactic vs. semantic 

heads 
  Headship not in (most) 

treebanks 
  Usually use head rules, e.g.: 

  NP: 
  Take leftmost NP 
  Take rightmost N* 
  Take rightmost JJ 
  Take right child 

  VP: 
  Take leftmost VB* 
  Take leftmost VP 
  Take left child 

Lexicalized PCFGs? 

  Problem: we now have to estimate probabilities like 

  How would we estimate the probability of this rule? 

  Never going to get these automically off of a treebank 
  Ideas? 

Count(VP(put) -> VBD(put) NP(dog) PP(in)) 

Count(VP (put)) 

VP(put) → VBD(put) NP(dog) PP(in) 

One approach 

  Combine this with some of the markovization 
techniques we saw 

  Collins’ (1999) parser 
 Models productions based on context to the left and the 

right of the head daughter. 

  LHS → LnLn-1…L1H R1…Rm-1Rm  

 First generate the head (H) and then repeatedly 
generate left (Li) and right (Ri) context symbols until the 
symbol STOP is generated. 
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Sample Production Generation 

VPput → VBDput NPdog PPin 
Note: Penn treebank tends to  
have fairly flat parse trees that  
produce long productions.  

VPput → VBDput NPdog 
H L1 

STOP PPin STOP 
R1 R2 R3 

PL(STOP | VPput) * PH(VBD | Vpput)*    
                                              PR(NPdog | VPput)* 
                                                  PR(PPin | VPput) * PR(STOP | PPin) 

Count(PPin right of head in a VPput production) 

Estimating Production Generation Parameters 

  Estimate PH, PL, and PR parameters from treebank data. 

PR(PPin | VPput) = 
Count(symbol right of head in a VPput-VBD) 

Count(NPdog right of head in a VPput production) 
PR(NPdog | VPput) = 

•  Smooth estimates by combining with simpler 
models conditioned on just POS tag or no lexical 
info 

smPR(PPin | VPput-) = λ1 PR(PPin | VPput)  
                                               + (1- λ1) (λ2 PR(PPin | VPVBD) + 
                                                                (1- λ2) PR(PPin | VP))  

Count(symbol right of head in a VPput) 

Problems with lexicalization 

  We’ve solved the estimation problem 
  There’s also the issue of performance 
  Lexicalization causes the size of the number of 

grammar rules to explode! 
  Our parsing algorithms take too long too finish 

  Ideas? 

Pruning during search 

  We can no longer keep all possible parses around 
  We can no longer guarantee that we actually return 

the most likely parse 
  Beam search [Collins 99] 

  In each cell only keep the K most likely hypothesis 
 Disregard constituents over certain spans (e.g. 

punctuation) 
 F1 of 88.6! 



2/21/11	  

10	  

Pruning with a PCFG 

  The Charniak parser prunes using a two-pass 
approach [Charniak 97+] 
  First, parse with the base grammar 
  For each X:[i,j] calculate P(X|i,j,s) 

  This isn’t trivial, and there are clever speed ups 

  Second, do the full O(n5) CKY 
  Skip any X :[i,j] which had low (say, < 0.0001) posterior 

 Avoids almost all work in the second phase! 

  F1 of 89.7! 

Tag splitting 

  Lexicalization is an extreme case of splitting the 
tags to allow for better discrimination 

  Idea: what if rather than doing it for all words, we 
just split some of the tags 

Tag Splits 

  Problem: Treebank tags 
are too coarse 

  Example: Sentential, PP, 
and other prepositions are 
all marked IN 

  Partial Solution: 
  Subdivide the IN tag Annotation F1 Size 

Previous 78.3 8.0K 

SPLIT-IN 80.3 8.1K 

Other Tag Splits 

  UNARY-DT: mark demonstratives as DT^U (“the X” 
vs. “those”) 

  UNARY-RB: mark phrasal adverbs as RB^U 
(“quickly” vs. “very”) 

  TAG-PA: mark tags with non-canonical parents 
(“not” is an RB^VP) 

  SPLIT-AUX: mark auxiliary verbs with –AUX [cf. 
Charniak 97] 

  SPLIT-CC: separate “but” and “&” from other 
conjunctions 

  SPLIT-%: “%” gets its own tag. 

F1 Size 

80.4 8.1K 

80.5 8.1K 

81.2 8.5K 

81.6 9.0K 

81.7 9.1K 

81.8 9.3K 
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Learning good splits:  
Latent Variable Grammars 

Parse Tree  
Sentence Parameters  

... 

Derivations 


