
2/21/11	

1	

Hand video

  http://www.youtube.com/watch?v=-KxjVlaLBmk

PARSING 3
David Kauchak
CS159 – Spring 2011

some slides adapted from
Dan Klein

Admin

  Assignment 3 out
 Due Friday at 6pm

  How are things going?
  Where we’ve been

  Where we’re going

Parsing evaluation

  You’ve constructed a parser
  You want to know how good it is
  Ideas?

2/21/11	

2	

Parsing evaluation

  Learn a model using the training set
  Parse the test set without looking at the “correct”

trees
  Compare our generated parse tree to the “correct”

tree

Treebank

Train Dev Test

Comparing trees

Correct Tree T Computed Tree P

Ideas?

I eat sushi with tuna

PRP

NP

V N IN N

PP

NP

VP

S

I eat sushi with tuna

PRP

NP

V N IN

PP NP

VP

S

N

S

Comparing trees

  Idea 1: see if the trees match exactly
 Problems?

 Will have a low number of matches (people often disagree)
 Doesn’t take into account getting it almost right

  Idea 2: compare the constituents

Comparing trees
Correct Tree T Computed Tree P

I eat sushi with tuna

PRP

NP

V N IN N

PP

NP

VP

S

I eat sushi with tuna

PRP

NP

V N IN

PP NP

VP

S

How can we turn this into a score?
How many constituents match?

N

S

2/21/11	

3	

Evaluation measures

  Precision

  Recall

  F1

of correct constituents

of constituents in the computed tree

of correct constituents

of constituents in the correct tree

2 * Precision * Recall

Precision + Recall

Comparing trees
Correct Tree T Computed Tree P

I eat sushi with tuna

PRP

NP

V N IN N

PP

NP

VP

S

Constituents: 11 # Constituents: 10 # Correct Constituents: 9

Precision: Recall: F1: 9/11 9/10 0.857

I eat sushi with tuna

PRP

NP

V N IN

PP NP

VP

S

N

S

Parsing evaluation

  Corpus: Penn Treebank, WSJ

  Parsing has been fairly standardized to allow for easy
comparison between systems

Training: sections 02-21
Development: section 22 (here, first 20 files)
Test: section 23

Treebank PCFGs

  Use PCFGs for broad coverage parsing
  Can take a grammar right off the trees (doesn’t work well):

ROOT → S

S → NP VP .

NP → PRP

VP → VBD ADJP

…..

Model F1

Baseline 72.0

2/21/11	

4	

Generic PCFG Limitations

  PCFGs do not use any information about where the
current constituent is in the tree

  PCFGs do not rely on specific words or concepts, only
general structural disambiguation is possible (e.g.
prefer to attach PPs to Nominals)

  MLE estimates are not always the best

Conditional Independence?

  Not every NP expansion can fill every NP slot
  A grammar with symbols like “NP” won’t be context-free
  Statistically, conditional independence too strong

Non-Independence

  Independence assumptions are often too strong.

  Example: the expansion of an NP is highly dependent on the parent
of the NP (i.e., subjects vs. objects).

  Also: the subject and object expansions are correlated

All NPs NPs under S NPs under VP

Grammar Refinement

  PCFG would treat these two NPs the same… but they’re not!
  We can’t exchange them: “the noise heard she”
  Idea: expand/refine our grammar
  Challenges:

  Must refine in ways that facilitate disambiguation
  Too much refinement -> sparsity problems
  To little -> can’t discriminate (PCFG)

2/21/11	

5	

Grammar Refinement

Ideas?

Grammar Refinement

  Structure Annotation [Johnson ’98, Klein&Manning ’03]
  Differentiate constituents based on their local context

  Lexicalization [Collins ’99, Charniak ’00]
  Differentiate constituents based on the spanned words

  Constituent splitting [Matsuzaki et al. 05, Petrov et al. ’06]
  Cluster/group words into sub-constituents

Less independence

PRP

NP

V N IN

PP

NP

VP

S

I eat sushi with tuna

N

S -> NP VP
NP -> PRP
PRP -> I
VP -> V NP
V -> eat
NP -> N PP
N -> sushi
PP -> IN N
IN -> with
N -> tuna

We’re making a strong
independence assumption here!

Markovization

  Except for the root node, every node in a parse
tree has:
 A vertical history/context
 A horizontal history/context

NP

NP

VP

S

NP VBD

Traditional PCFGs use the full horizontal context and
a vertical context of 1

2/21/11	

6	

Vertical Markovization

  Vertical Markov order: rewrites depend on past k
ancestor nodes.

  Order 1 is most common: aka parent annotation

Order 1 Order 2

Allows us to make finer grained
distinctions

^S

^VP

Vertical Markovization

F1 performance # of non-terminals

Horizontal Markovization

Order 1 Order ∞

  Horizontal Markov order: rewrites depend on past k
ancestor nodes

  Order 1 is most common: condition on a single sibling

2/21/11	

7	

Horizontal Markovization

F1 performance # of non-terminals

Problems with PCFGs

  What’s different between basic PCFG scores here?

Example of Importance of
Lexicalization

  A general preference for attaching PPs to NPs
rather than VPs can be learned by a vanilla PCFG.

  But the desired preference can depend on specific
words.

27

S → NP VP
S → VP
NP → Det A N
NP → NP PP
NP → PropN
A → ε
A → Adj A
PP → Prep NP
VP → V NP
VP → VP PP

0.9
0.1
0.5
0.3
0.2
0.6
0.4
1.0
0.7
0.3

English

PCFG
Parser

S

NP VP

John V NP PP

put the dog in the pen

John put the dog in the pen.

28

Example of Importance of
Lexicalization

  A general preference for attaching PPs to NPs
rather than VPs can be learned by a vanilla PCFG.

  But the desired preference can depend on specific
words.

S → NP VP
S → VP
NP → Det A N
NP → NP PP
NP → PropN
A → ε
A → Adj A
PP → Prep NP
VP → V NP
VP → VP PP

0.9
0.1
0.5
0.3
0.2
0.6
0.4
1.0
0.7
0.3

English

PCFG
Parser

S

NP VP

John V NP

put the dog in the pen X
John put the dog in the pen.

2/21/11	

8	

Lexicalized Trees

How could we lexicalize
the grammar/tree?

Lexicalized Trees

  Add “headwords” to
each phrasal node
  Syntactic vs. semantic

heads
  Headship not in (most)

treebanks
  Usually use head rules, e.g.:

  NP:
  Take leftmost NP
  Take rightmost N*
  Take rightmost JJ
  Take right child

  VP:
  Take leftmost VB*
  Take leftmost VP
  Take left child

Lexicalized PCFGs?

  Problem: we now have to estimate probabilities like

  How would we estimate the probability of this rule?

  Never going to get these automically off of a treebank
  Ideas?

Count(VP(put) -> VBD(put) NP(dog) PP(in))

Count(VP (put))

VP(put) → VBD(put) NP(dog) PP(in)

One approach

  Combine this with some of the markovization
techniques we saw

  Collins’ (1999) parser
 Models productions based on context to the left and the

right of the head daughter.

  LHS → LnLn-1…L1H R1…Rm-1Rm

 First generate the head (H) and then repeatedly
generate left (Li) and right (Ri) context symbols until the
symbol STOP is generated.

2/21/11	

9	

Sample Production Generation

VPput → VBDput NPdog PPin
Note: Penn treebank tends to
have fairly flat parse trees that
produce long productions.

VPput → VBDput NPdog
H L1

STOP PPin STOP
R1 R2 R3

PL(STOP | VPput) * PH(VBD | Vpput)*
 PR(NPdog | VPput)*
 PR(PPin | VPput) * PR(STOP | PPin)

Count(PPin right of head in a VPput production)

Estimating Production Generation Parameters

  Estimate PH, PL, and PR parameters from treebank data.

PR(PPin | VPput) =
Count(symbol right of head in a VPput-VBD)

Count(NPdog right of head in a VPput production)
PR(NPdog | VPput) =

•  Smooth estimates by combining with simpler
models conditioned on just POS tag or no lexical
info

smPR(PPin | VPput-) = λ1 PR(PPin | VPput)
 + (1- λ1) (λ2 PR(PPin | VPVBD) +
 (1- λ2) PR(PPin | VP))

Count(symbol right of head in a VPput)

Problems with lexicalization

  We’ve solved the estimation problem
  There’s also the issue of performance
  Lexicalization causes the size of the number of

grammar rules to explode!
  Our parsing algorithms take too long too finish

  Ideas?

Pruning during search

  We can no longer keep all possible parses around
  We can no longer guarantee that we actually return

the most likely parse
  Beam search [Collins 99]

  In each cell only keep the K most likely hypothesis
 Disregard constituents over certain spans (e.g.

punctuation)
 F1 of 88.6!

2/21/11	

10	

Pruning with a PCFG

  The Charniak parser prunes using a two-pass
approach [Charniak 97+]
  First, parse with the base grammar
  For each X:[i,j] calculate P(X|i,j,s)

  This isn’t trivial, and there are clever speed ups

  Second, do the full O(n5) CKY
  Skip any X :[i,j] which had low (say, < 0.0001) posterior

 Avoids almost all work in the second phase!

  F1 of 89.7!

Tag splitting

  Lexicalization is an extreme case of splitting the
tags to allow for better discrimination

  Idea: what if rather than doing it for all words, we
just split some of the tags

Tag Splits

  Problem: Treebank tags
are too coarse

  Example: Sentential, PP,
and other prepositions are
all marked IN

  Partial Solution:
  Subdivide the IN tag Annotation F1 Size

Previous 78.3 8.0K

SPLIT-IN 80.3 8.1K

Other Tag Splits

  UNARY-DT: mark demonstratives as DT^U (“the X”
vs. “those”)

  UNARY-RB: mark phrasal adverbs as RB^U
(“quickly” vs. “very”)

  TAG-PA: mark tags with non-canonical parents
(“not” is an RB^VP)

  SPLIT-AUX: mark auxiliary verbs with –AUX [cf.
Charniak 97]

  SPLIT-CC: separate “but” and “&” from other
conjunctions

  SPLIT-%: “%” gets its own tag.

F1 Size

80.4 8.1K

80.5 8.1K

81.2 8.5K

81.6 9.0K

81.7 9.1K

81.8 9.3K

2/21/11	

11	

Learning good splits:
Latent Variable Grammars

Parse Tree
Sentence Parameters

...

Derivations

