Hand video

http://www.youtube.com/watch?v=-KxjVlaLBmk

Admin

- Assignment 3 out
 Due Friday at 6pm
- How are things going?
- □ Where we've been
- Where we're going

Parsing evaluation

- You've constructed a parser
- $\hfill\square$ You want to know how good it is

🗆 Ideas?

Comparing trees

- Idea 1: see if the trees match exactly
 - Problems?
 - Will have a low number of matches (people often disagree)
 - Doesn't take into account getting it almost right
- □ Idea 2: compare the constituents

7

Lexicalized PCFGs?

- $\hfill \label{eq:problem:problem:we}$ Problem: we now have to estimate probabilities like $\mbox{VP(put)} \rightarrow \mbox{VBD(put)} \ \mbox{NP(dog)} \ \mbox{PP(in)}$
- □ How would we estimate the probability of this rule?

Count(VP(put) -> VBD(put) NP(dog) PP(in))

Count(VP (put))

Never going to get these automically off of a treebank
 Ideas?

One approach

- Combine this with some of the markovization techniques we saw
- Collins' (1999) parser
 Models productions based on context to the left and the right of the head daughter.

• LHS \rightarrow L_nL_{n-1}...L₁H R₁...R_{m-1}R_m

First generate the head (H) and then repeatedly generate left (L_i) and right (R_i) context symbols until the symbol STOP is generated.

Problems with lexicalization

- We've solved the estimation problem
- □ There's also the issue of performance
- Lexicalization causes the size of the number of grammar rules to explode!
- Our parsing algorithms take too long too finish
- Ideas?

Pruning during search

- We can no longer keep all possible parses around
- We can no longer guarantee that we actually return the most likely parse
- □ Beam search [Collins 99]
 - \blacksquare In each cell only keep the ${\bf K}$ most likely hypothesis
 - Disregard constituents over certain spans (e.g.
 - punctuation)
 - F1 of 88.6!

Pruning with a PCFG

□ The Charniak parser prunes using a two-pass approach [Charniak 97+] First, parse with the base grammar

- For each X:[i,j] calculate P(X | i,j,s) This isn't trivial, and there are clever speed ups
- □ Second, do the full O(n⁵) CKY
- Skip any X :[i,j] which had low (say, < 0.0001) posterior Avoids almost all work in the second phase!

□ F1 of 89.7!

Tag splitting

- □ Lexicalization is an extreme case of splitting the tags to allow for better discrimination
- □ Idea: what if rather than doing it for all words, we just split some of the tags

Other Tag Splits		
	F1	Size
 UNARY-DT: mark demonstratives as DT^AU ("the X" vs. "those") 	80.4	8.1K
 UNARY-RB: mark phrasal adverbs as RB^AU ("quickly" vs. "very") 	80.5	8.1K
 TAG-PA: mark tags with non-canonical parents ("not" is an RB^AVP) 	81.2	8.5K
 SPLIT-AUX: mark auxiliary verbs with -AUX [cf. Charniak 97] 	81.6	9.0K
 SPLIT-CC: separate "but" and "&" from other conjunctions 	81.7	9.1K
□ SPLIT-%: "%" gets its own tag.	81.8	9.3K

