
Computer Science 62

Lab 13

Wednesday, April 28, 2010

This lab will be a warm-up for Assignment 11. You are to write a single-

source shortest path function using breadth-first search. In the assignment

itself, you will replace the queue with a priority queue to obtain a full im-

plementation of Dijkstra’s algorithm.

Getting Started

Read Assignment 11. Make a new directory for this lab. Copy either our ver-

sion of priorityqueue62 into your working directory from the Assignment

11 starter or copy your version.

Dijkstra’s

Review Dijkstra’s algorithm from class. A copy of the high-level algorithm

is at the end of this document. Write a shortest paths function that takes a

graph and returns a parent map:

map<int,int> shortestpaths(int start,

const map<int,list<int> > & graph);

Notice that this is slightly different than the more general version written

in class (and shown below). The version below accepts a weighted graph.

In our case, we’ll be running Dijkstra’s on a graph where all the weights are

implicitly 1:

map<int, list<pair<int, int> > > versus map<int, list<int> >

1



String processing

As part of our next assignment, you will be doing some string process-

ing when reading in the movie data file. Search for the istringstream

class in the web page from our C++ reference link on the course web page.

istringstreams allow us to do processing of strings without having to do

character-level processing. Look at the constructor. You can created a new

istringstream as follows:

string movie_line = "32:197,4;615,4;680,1;";

istringstream in(movie_line, istringstream::in);

The first parameter is the string we want to process and the second tells

it that we’re going to be reading from this string.

Now, look at the operator>> method of istringstream. Notice that

there are many overloaded versions of this operator. How this benefits us

is that depending on what is on the right hand side of the >> operator,

the stream will read as many characters as possible that fit the type of the

variable. For example,

int num;

in >> num;

would result in num containing “32”. If we then did:

char c;

in >> c;

in >> num;

What are the values of c and num?

Once you’re comfortable with this, write a method:

pair<int, list<pair<int,int> > > parse line(string line)

That takes a line formatted like our movie review file and returns a pair

consisting of the reviewer id and a list containing the pairs of movie id and

movie review.

Like other streams we’ve seen, you can check for when the istringstream

is at the end of the string using in.eof().

2



/*

* Dijkstra’s single-source shortest path algorithm,

* as discussed in class on April 28.

*

* Arguments: a starting vertex

* a weighted graph presented as an adjacency map

*

* Result: a map of parents in a tree of shortest paths

*

* Rett Bull

* April 28, 2009

* Modified by Dave 4/23/2010

*/

map<int,int> shortest paths(int start,

const map<int,list<pair<int,int> > > & graph) {

map<int,int> parents;

priorityqueue62 frontier;

parents[start]=start;

frontier.push(start, 0);

while (!frontier.is_empty()) {

int v = frontier.top_serialnumber();

int p = frontier.top_priority();

frontier.pop();

for (the neighbors (n,w) of v)

if (n == parents[v])

; // do nothing

else if (n is not in the frontier and has not been visited) {

parents[n] = v;

frontier.push(n, p + w);

}else if (p + w < frontier.get_priority(n)) {

parents[n] = v;

frontier.reduce_priority(n, p + w);

}

} // end while

return parents;

}
3


