
Computer Science 62

Lab 11

Wednesday, April 14, 2010

In this lab, we will be playing with pointers by building a linked list

class similar to our Java implementation. In addition, we’ll also look at a

few experiments to understand how memory needs to be managed in Java.

Getting started

Copy all of the contents from:

/common/cs/cs062/labs/lab11

On the course web page, look at our notes for lists and refresh your memory

on how we implemented linked lists in Java.

Take a look at the definition of the node class in C++ (both the .h and

.cpp) files. What is different?

Compile the node class by typing:

g++ -c node.cpp

(notice that we’re just compiling the file, but not building an executable

yet).

1



LinkedList

Now, take a look at the linked list header file (linkedlist.h). The header

file contains a basic set of linked list methods. Implement these methods in

a file called linkedlist.cpp. Most of these methods should be a straight-

forward translation of the code from Java. Note, however, that you will need

to use pointers! Just to keep you in the good habit, #include <cassert>

and use assert statements appropriately in your code.

Again, to compile this type:

g++ -c linkedlist.cpp

Using the linked list class

Once you have it compiling and you think you have it working, look at the

linkedlisttest.cpp class, then compile it:

g++ -c linkedlisttest.cpp

and then compile/link all of your previously compiled object files into an

executable binary (notice that linkedlisttest.cpp has a main method,

which is required to construct an executable):

g++ -o linkedtest node.o linkedlist.o linkedlisttest.o

or

g++ -o linkedtest *.o

Run the test:

./linkedtest

If all works well, you should the numbers from 0 to 9 printed out, except 4

is exchanged with 100.

Note that anytime you change a .cpp file, you’ll need to recompile that

particular file, but then also recompile the executable with the -o command.

Eventually, we’ll talk about makefiles which makes this process a bit faster.

2



Things that make you go “hmm...”

Change the main method in linkedlisttest.cpp to run test2 and recom-

pile. Repeat for test3 (it’s a little weird to store a Node in a vector since

we’re ignoring the nextElement pointer, but I wanted to convince you that

test2 and test3 are roughly the same). Do these results surprise you? Why

are these results different?

Try a few different varieties of test2:

• Change “LinkedList l2 = l” to “LinkedList l2(l)”. Does this

change your result? Where does that constructor come from?

• Change the linked list variables in test2 to be linked list pointers. Use

the “new” operator to create a new linked list object for l. Set l2 = l.

Does this change your answer? Does this make sense?

3


