Computer Science 62
Lab 2

Wednesday, February 17, 2010

The programming exercise for today’s laboratory is about the Two Towers
problem. To make the problem tractable, we are taking a “bottom up”
approach. It is not the way you would normally approach a problem, but it
makes sense here because we have already thought about the situation. You
will first write an integer subset class and then use it to solve the problem.

IntegerSubsetIterator

For the first step, you are to write a class

public class IntegerSubsetIterator
implements Iterator<ArrayList<Integer>>

whose constructor takes a single integer size and creates an object that
iterates over all the subsets of {0,1, ..., size-1}. There will be 2512° subsets.

The iterator will return “subsets” as ArrayLists whose elements are the
elements of a subset. For example, running the code

IntegerSubsetIterator iter = new IntegerSubsetIterator(3);
while (iter.hasNext())
System.out.println(iter.next());

will produce the output:

(]

(o]

[1]

[0, 1]

(2]

[0, 2]
(1, 2]
[0, 1, 2]

Be sure that you understand what the iterator is doing before writing
any code. When you are ready, open a new Eclipse project for this lab,
and use one of the strategies from the preliminary reading for this lab to
implement the class.

The Iterator interface requires only three methods, hasNext, next,
and remove. The last of these is not used here and can be the “do nothing”
method.

Two Towers

(insert Lord of the Rings reference here :)

Now that you have created the subset iterator, you are ready to use it to solve
the Two Towers problem. As Bailey describes in his book, one approach is
to compute the heights of all the blocks

15
h=> Vi,
i=1

and then to look through all subsets of {1,2,...,15} to find the one whose
height comes closest to, without exceeding, h/2.

Write a method:
public static void twoTowersSolver (ArrayList<Double> blockSizes)

that takes as input an ArrayList of block sizes (the easiest way is just to
represent a block size by the size of one side). This method should iterate
through all of the possible subsets and find the one subset whose sum is
closest to h/2.

There is one complication: the IntegerSubsetIterator class generates
subsets of {0,1,...,14} and you need to correlate these to the actual block
sizes. A loop something like:

ArrayList<Integer> set = it.next();

int height = 0;

for(Integer i: set){
height += blockSizes.get(i);

should solve this problem.
Now, try out some different block sizes and print out the difference. For
example:

public static void main(String args[]1){
ArrayList<Double> blocks = new ArrayList<Double>();

for(int i = 1; i <= 15; i++){
blocks.add(Math.sqrt(i));

System.out.println(twoTowersSolver(blocks)) ;

Have your program print the actual half-height, the height of the best
solution, and the blocks in the best solution.

Once you have a working program, experiment by increasing the number
of blocks. Try values including 24, 28, and 33. Explain the results and the
time it takes to get them.

