
Computer Science 62

Lab 2

Wednesday, February 3, 2009

In this laboratory, we will use our Stopwatch class to measure the ef-
ficiency of the Vector class. Specifically, we want to see how execution
speed is affected by the increment. Recall that increment is the amount
by which the underlying data array is lengthened when the vector requires
more space. If increment is set to zero, then the size of the data array is
doubled. We’ll be using the Vector class since the ArrayList class only
doubles the array length and does not give you incremental building as an
option.

Begin by closing all of your open Eclipse projects, so that errors in them
will not affect your work today. Use Projects/Close.

Create a new Eclipse project named something like Lab2. Remember to
continue to the window in which you can add the BAILEY variable. Next,
copy the file /common/cs/cs062/labs/lab2/StopWatch.java into the src
directory in your new Eclipse project and select File/Refresh.

Start a new class VectorTimer, which will be simply a vessel for the
main method and a few other static methods, :

• public static long run(int maxSize, int increment)

The run method creates a new empty vector of type Vector<String>
with the specified increment. It returns the time that it takes to add
maxSize strings to the Vector. Use the Vector<String> method add,
and always add the same constant string—your name, for example. To
attempt to minimize the impact from garbage collection add the line:
System.gc(); in your run method right before you start the timer.

• public static ArrayList<Long> trial(int size,
ArrayList<Integer> incrs)

1

The trial method compares the results from run for a fixed size and
varying increments. It makes one call to run for each entry in the
incrs vector. The results are returned in an ArrayList whose size is
the same as that of incrs.

• public static void main(String[] args)

The main method runs several trials and prints the results. Start with
increments of 1, 10, and 0; and sizes of 0, 5000, 10000, 15000, You
may want to adjust the sizes when you see the results.

Present the output in a table like the one below; see the note below
about formatting. The nanosecond precision of Stopwatch is too fine; you
will need to adjust the scale of the timing values as they are printed, which
can vary computer to computer.

size | linear (1) | linear (10) | double

0 | 0 | 0 | 0
5000 | 148 | 14 | 1
10000 | 580 | 58 | 0
15000 | 1321 | 132 | 0
20000 | 2733 | 267 | 1
25000 | 4863 | 491 | 1
30000 | 7781 | 781 | 1

We will discuss the significance of your results, and those of your class-
mates, as they appear. Some things to think about: what is the running
time (i.e. Big-O running time) of increment vs. double? Does your data
accurately reflect this?

More fun...

Once you’ve got all this working, if you have time we can try out a few
additional things:

• What happens with other increments (besides 1 and 10)? Can you
predict what the results will look like, for example what do you think
a column headed linear (100) would look like?

• Rather than just running one experiment per setting, you can run
multiple experiments (say 5 or 10) and average the results in your run
method. This will be a bit slower, but should give you more accurate
results.

2

• It may be interesting to compare the performance difference between
ArrayList and Vector. ArrayList does NOT allow you to adjust the
increment size; it always doubles the size. However, you can compare
the performance of Vector vs. ArrayList for doubling sizes. Which
is faster?

A note on formatting textual output. The object System.out has
type PrintStream, which in turn has a method format. format is very
general and makes it easy to print the lines in the table. The call

System.out.format("First: %8d, second: %-12s%n", num, str);

creates a string and prints it. The string is formed by

• replacing %8d with the numerical value of num, right justified in a field
eight characters wide, and

• replacing %-12s with the string representation of str, left justified in
a field twelve characters wide.

If num and str are 47 and XLVII respectively, then

First: 47, second: XLVII

is the result of the method call above.
The letters after the percent sign, d and s in this example, indicate the

kind of data being formatted; they are not variables. The sequence %n is the
OS independent newline character. You may have as many % expressions
in the format string as you want; they are matched with the arguments
that follow. There are many more options for format strings; see the Java
documentation for the classes PrintStream and Formatter or the tutorial at
http://java.sun.com/docs/books/tutorial/java/data/numberformat.html
for more information.

3

