
Computer Science 62

Lab 1

Wednesday, Jan 27, 2010

This laboratory is intended to get you started with the programs and
systems in the lab, and to give you an opportunity to complete your first
substantial program for the class.

Even though most of you have used Eclipse before, please follow the
introductory steps below carefully. Correcting configuration errors is not
impossible, but it is time-consuming and distracting.

1. Setting things up: You should all have your accounts and passwords.
Log into one of the computers in the classroom. Among the icons in
the dock at the bottom of the screen are four that will be important
for the class.

Terminal Eclipse Safari Emacs

You will use Terminal and Eclipse today. Safari is a web browser (try
it out!), through which you can read the course pages and documen-
tation. Emacs is an editor that we will use later in the course.

Open a terminal window and type the following commands. They will
create a (private) folder for this class and a workspace within that
folder.

mkdir cs062
chmod 700 cs062
cd cs062
mkdir workspace

1



(Explanation: The command mkdir makes a directory, and cd changes
to that directory. The chmod command makes the directory private,
so that others cannot see its contents. A few other commands for
your information: ls lists the contents of the current directory, cd ..
changes the directory to one directory lower, rm removes a specified
file and you can type man <command> for any command and it will give
you more information (short for “manual”).

Now start Eclipse. When it asks you for a workspace, select Browse
and find the cs062/workspace folder you just created. From the bar
at the top of the screen, select Eclipse, then Preferences. Then
in the Preferences window, expand Java and then Build Path, and
then select Classpath Variables. Click on New and enter the name
BAILEY and the path

/common/cs/cs062/bailey.jar

These steps need only be done once.

2. Adding libraries: Eclipse works in units called “projects.” There will
be one for each laboratory and each assignment in the class. To start
a project, select File/New/Java Project. Give your project a name,
like Lab1, but do not click Finish yet! Click Next, then Libraries,
and then Add Variable. Add the variable BAILEY, and then click OK
and Finish.

This step adds the bailey library (which we just setup) to our project
so that our project knows that code is available. This allows us to
use the import command in our code to bring outside resources (i.e.
resources that are not included with java). For most of the labs, you
will need to add the BAILEY variable to your project.

3. Your program for lab today is to write a text-based version of the Silver
Dollar Game. See Section 3.10 of Java Structures for a description of
the game. Make sure you understand how the game is played before
coding it up! Think about the methods described there and choose
an appropriate data structure to model the game. This is a time for
discussion in the lab; do not hesitate to ask questions or share your
thoughts.

2



The behavior, in the console, will look like this:

_o____oo_oo_ Next move? 6 4
_oo____o_oo_ Next move? 2 2
Illegal move!
_oo____o_oo_ Next move? 1 1
o_o____o_oo_ Next move?
...
ooooo_______ You win!!

The pairs of numbers after “Next move?” signify the location of a
coin and the number of squares that the coin is to move to the left.
Remember we’re computer scientists, which means we start counting
at 0 not 1, so the leftmost square is location 0, not 1.

For this first exercise, we have given you a start on the code for the class
TextCoinStrip. It can be found at /common/cs/cs062/labs/lab1/.
To get it in to your directory, copy the file TextCoinStrip.java into
your src directory. To do this, type:

cp /common/cs/cs062/labs/lab1/TextCoinStrip.java ~/cs062/workspace/Lab1/src/
(where ”lab1” in the destination of the copy should be the name or
your project for this lab). Then, go in to Eclipse and ”ctrl+click”
on the project and select ”Refresh”. You should now see the starting
code.

Take some time to understand the code (I promise you’ll be much
better off spending 5-10 min. looking at the code before doing any
coding yourself), then fill in the four missing methods.

• toString which creates the string representation of the strip,

• isLegalMove which determines if a move is legal,

• makeMove which makes a (legal) move, and

• gameIsOver which determines if the game is completed.

4. Before you leave the laboratory this afternoon, open Safari and navi-
gate to the course Resources section of the class home page. At the
top of the list is a link to the instructions for submitting assignments.

For practice, submit your file TextCoinStrip.java. When you’re
creating your folder to submit, make sure to give it a name indicating

3



that it’s your lab (e.g. ”kauchakdave-lab1”) so as not to confuse it
with your first assignment. This is a test. It is only a test. You are
not being graded on what you submit today. The file need not be
complete or error-free. We simply want to make sure that you can
successfully submit files.

5. Extension: This is a suggestion for those who want to go beyond
today’s exercise; it is not a course requirement. Let the computer
assume the role of one player and experiment with strategies for the
Silver Dollar Game. You may conduct your experiments in either the
text-based or the graphical world. Here are some simple strategies:

• Move the leftmost possible coin as far as possible.

• Move the rightmost possible coin one square.

• Find a coin capable of moving the farthest and move it the full
distance.

• A “gap” is a sequence of unoccupied squares between two coins.
If possible, make a move to increase the number of gaps.

4


