
CS62 - Dijkstra’s shortest paths algorithm

David Kauchak

Dijkstras algorithm, the idea. Maintain three sets of vertices:

– The known, consisting of vertices whose shortest paths have been
found.

– The frontier, consisting of those vertices for whom a path, but not
necessarily a shortest path, has been found from the starting vertex.

– The unknown, consisting of the rest of the vertices.

The algorithm operates in a few steps:

– At the start, the starting vertex is the only known vertex, and it is in
the frontier.

– We make “progress” by selecting the frontier vertex closest to the
starting vertex, call it u. At this point, we’ve found the shortest path
from the starting vertex to u.

– We then look at each neighbor of u and add it to the frontier or update
its information.

Some general things to think about/talk about:

– What does the method do? Explain what the role of the different
parameters is, what is returned and how the method operates.

– Show some examples. Note that the Dijkstra’s algorithm is for weighted
graphs. An interesting example is when there are multiple different
paths from the starting vertex to a given vertex. Show how the algo-
rithm makes sure that the only the shortest path is found.

1

– What is the running time of the method with respect to |V| the num-
ber of vertices and |E| the number of edges?

In the worst case, there are |V| calls to pop (when the graph is con-
nected) and there are |E| calls to reduce priority (either implicitly
in push or explicitly).

Some specific things to think about/talk about:

– What purpose does the priority queue serve?

– What do the three different if statements check?

– In my notes above, I mention Dijkstra’s keeps three different sets.
Where are these three sets in the code?

– What is stored in the parents map?

– When we call reduce priority what have we found? What is the
purpose of the call?

2

map<int,int> shortest paths(int start,

const map<int,list<pair<int,int> > > & graph) {

map<int,int> parents;

priorityqueue62 frontier;

parents[start]=start;

frontier.push(start, 0);

while (!frontier.is_empty()) {

int v = frontier.top_serialnumber();

int p = frontier.top_priority();

frontier.pop();

for (the neighbors (n,w) of v)

if (n == parents[v])

; // do nothing

else if (n is not in the frontier and has not been visited) {

parents[n] = v;

frontier.push(n, p + w);

}else if (p + w < frontier.get_priority(n)) {

parents[n] = v;

frontier.reduce_priority(n, p + w);

}

} // end while

return parents;

}

3

