
Computer Science 62

Programming Style

Spring Semester, 2010

Like English prose, computer programs can be presented clearly and elegantly.
Part of the course is to develop your stylistic judgment and teach you how to
write clean, crisp, and correct code. The guidelines here, although by no means
complete or authoritative, give you a place to start.

A program is not merely a set of instructions to the computer. It is also a means
of communication among people. In real life—as opposed to Computer Science
courses—programs are written by many people over months or even years. It is
critically important that others can easily understand your work. The overall
format, comments, and the choice of names all contribute to the clarity of your
work and deserve close attention.

1. General Structure

• Be consistent. You may experiment with different formats at different
times, but do not do it in a single file.

• Pay attention to style from the time you begin to write, and use it as an
aid in structuring your code. Contrary to your feelings as time runs short,
it is never expedient to write sloppy code and “fix it” later.

• Review your work before you submit it. Be certain that it is both correct
and well-presented.

2. Blank Lines and Indentation

• Use blank lines to separate logically separate parts of a program. For
example, methods should be separated by a blank line. Also, long blocks
of code should be broken into logical “paragraphs” with blank lines. On
the other hand, do not insert blank lines where they would separate closely
related parts of your code.

• Use indentation consistently. Eclipse’s format function (click on Source,
then Format) or type CMD+a to select all and CMD+i to indent (where CMD
is the apple or command key).

• Give each declaration and statement its own line. Or, equivalently, start
a new line after a semicolon.



• Don’t make lines too long (< 80 characters is a good rule). You can break
a statement over multiple lines and often make it more readable.

3. Comments

• Each part of your program should be introduced by a comment that indi-
cates its purpose, semantics, and use. Early in the course, we will explore
the JavaDoc system that promotes this kind of documentation.

– A class (or program) is normally in a separate file. It should begin
with a comment that states who wrote the code, when, and why.
This is the place to advertise any special features of your code.

– Each method should be preceded with a comment that tells what the
method does, what each parameter signifies, and what value (if any)
is returned.

– Each variable, or block of closely related variables, should have a
comment indicating the purpose of a variable.

• Avoid over-commenting. If there are sufficient general comments, as dis-
cussed above, then line-by-line comments will often be unnecessary. In
particular, avoid useless comments like the one below.

n = n + 1 // add one to n

• Comments should go above the code or, in the case of very short comments,
to the right. Always put a blank line before a comment. Indent comments
by the same amount as the code.

• As you are developing and testing a program, it is often useful to “com-
ment out” blocks of code. But the code you submit should have no such
comments.

4. Variables and Names

• Instance variables should be used sparingly, and they should never be
public. When necessary, provide methods to allow the user of a class to
access or modify internal data.

• Use descriptive names. If you are working on a program that simulates
a bank account, balance is a good name (if the quantity is actually a
balance!), while b or boris are not. For the most part, one-character
names are appropriate only when they are used locally within a very small
block of code.



• The convention in Java is to use all lowercase for variable and method
names. Class names begin with an uppercase letter, and constants (indi-
cated by static final) are all uppercase.

When a name is a “compound word,” the second and subsequent words
begin with an uppercase letter. Examples: ArrayList, binarySearch,
hashCode.


