
Computer Science 62

Terminal Windows, Emacs, Subversion and Make
or, “Out of Eclipse and into the blinding glare of the command line . . . ”

This reference guide gives you a brief and pragmatic introduction to a few
widely-used programs and utilities. The descriptions here are merely to get you
started; they are by no means complete. Long books have been written about
each of these programs. See the course resources page for pointers.

Terminal window. The terminal window permits keystroke-based
communication with the computer. You already have a bit of expe-
rience with it. Here is a quick summary of the most common ideas
and commands.

Directory structure. The directory (or folder) structure is hierarchical. The
top-level, called the root, is /. Your home directory is something like /home/
csagehen and is abbreviated with the symbol ~. Your directory for this class is
probably ~/cs062.

Working directory. Each terminal window has a default directory, called the
working directory. When you type a file name like MyClass.java, you are
referring to the file with that name in the current working directory. A single
period is an abbreviation for the current directory, and two consecutive periods
denotes the parent of the current directory.

File specifications. As just mentioned, files in the current working directory may
be specified by name. Other files may be specified by giving the full path, a
path relative to the home directory, or a path relative to the current directory:

/common/cs/cs062/dropbox/
~/cs062/workspace/Assignment5/Calculator.java
../bin/Calculator.class

One can specify multiple files with the wildcard character *. For example,

~/cs062/workspace/*/src/*.java

corresponds to a list of all the Java files in your Eclipse workspace.

Common commands. Each command consists of a program, followed possibly
by some options, and then a list of files on which to operate. Here are a few.



pwd Print the current working directory.

cd 〈new-directory〉 Change the working directory to the
one specified.

ls 〈files〉 List the files specified.

ls 〈directory〉 List the files in the named directory.
An empty directory specification
means the current directory.

cp 〈source〉 〈destination〉 Copy one file to another.

cp 〈files〉 〈destination-directory〉 Copy one or more files to another
directory.

mv 〈old-name〉 〈new-name〉 Rename and/or move a file.

mv 〈files〉 〈destination-directory〉 Move files to another directory,
preserving the names.

mkdir 〈directory〉 Create a directory with the specified
name.

rm 〈files〉 Delete the specified files.

rm -rf 〈directory〉 Delete the specified directory, its
contents, and (recursively) all the
subdirectories.

cat 〈file〉 Print the contents of a file to the
terminal window. (Only useful for
short files.)

javac 〈files〉 Compile the specified Java files.

java 〈class〉 Run the main method in the specified
class.

./programname Run a program that appears in the
current directory.

The difference between “copy” and “move” is that copying preserves the original
file. Be as careful with cp and mv as you would be with rm: If the target of
a copy or a move is an existing file, that file will be replaced—and there is no
getting it back!

The Java commands are inconsistent. With javac, you must specify the exten-
sion .java. With java, you cannot specify the extension .class.

A very handy feature of most terminal windows, including the ones we use,
is command-line editing. You can recall previously-typed commands with the
up-arrow key, and you can edit such lines with the left- and right-arrow keys,
the backspace key, and the delete key.



Emacs. For some, Emacs is a complete computing environment, a paradise
from which one need never emerge. For others, Emacs is an incomprehensible
morass from which one can never emerge. For us, Emacs is simply a text editor.

The version of Emacs on the Macintosh computers in the laboratory
is Aquamacs. You can start it by clicking on the gnu icon in the
toolbar. There are buttons at the top of the window for opening and
saving files and for exiting the program.

On other systems, you may have to invoke Emacs from the command line byFrom 2008, here are
Charles Zhou’s ideas
of fun: Figure out how
to change Emacs’s
color schemes for
different file types.
Learn how to run
programs from inside
of Emacs. Explore the
many useless features
like ELIZA.

typing emacs at the command line. Depending on the configuration, you will
either get a new window or else the editor will open in the terminal window. You
may not have all the buttons, and you may have to use keystroke commands.
A few appear below; there are more on the quick reference card linked from the
course resources page.

ctrl-X s save a file
ctrl-X c exit Emacs
ctrl-X f open a file
ctrl-minus undo
ctrl-S search forward
ctrl-R search backwards
esc % replace text
ctrl-K delete to the end of a line
ctrl-space begin a selection
ctrl-W complete the selection and delete it
ctrl-Y insert the most recently deleted text



Subversion. Subversion is a version control system, also known as a software
configuration management system. The idea is to maintain a collection of “snap-
shots” of a project. The basic cycle is to check out a copy of the project, make
changes, and then post (commit) the project files back as a new version. TheErik Kuefler’s

comment from 2008:
“On the few occasions
when I thought a
project would be easy
and chose not to use
Subversion, I ended
up regretting the
decision.”

value to you as a solo programmer is that you can recover from a disastrous
mistake by reverting back to an earlier version of the project. Subversion is
even more valuable when there is a team of programmers because it keeps one
programmer from interfering with the work of another. (Imagine your state of
mind if you and another programmer both check out a project. You work for
hours and check it back in. Minutes later, your partner, who has done almost
nothing, checks in the other copy and overwrites all your hard work. Subversion
prevents that kind of loss.)

Let us begin with some terminology. You have a project directory in which
you work. Separately, Subversion maintains a record of this directory, called
the project repository. Normally, the Subversion repository is located in shared
space where all the programmers have access to it. It might even be on another
computer far away. A repository is named with URL; in our case it will be a
file specification with a full path, like this:

file:///home/dkauchak/cs062/repos/projectA

When you type the name of your repository, be sure that you substitute your
own userid and the actual name of your project directory. (If we had a class
project, the URL might be something like svn+ssh://vpn.cs.pomona.edu/
usr/local/svn/cs062 or https://svn.cs.pomona.edu/cs062. These more
sophisticated uses of Subversion allows us to share repositories among program-
mers across the network.)

First, create the repository. For our class, each of you will have one directory
in which you store the repositories. It is probably best to put it in your cs062
directory. Change to your cs062 directory and create a new directory repos
there.

cd cs062

mkdir repos

The directory you just created, repos can contain several different projects.
Make an entry in the repos directory with the following command. (Do not
type the angle brackets; they are used to indicate places where you are to
substitute a name in the context in which you are working.)

svnadmin create repos/<your project’s name>

This command must be given once (and only once) for each project that you
want Subversion to track. Do not worry about what files are in the repos



directory; Subversion will manage them. Your concern is with the files in the
project directory.

Second, create the working project directory. It makes sense to give
the project directory the same name as the Subversion project. Create your
working directory, if it does not already exist, and navigate to it. In the working
directory, give the command below. (The period at the end is not punctuation;
it stands for the current directory.)

svn checkout <path to repos directory>/repos/<your project’s name> .

As mentioned earlier the path must be a full URL, for example,

svn checkout file:///home/rbull/cs062/repos/projectA .

Third, add files to the svn repository. You now have a version-controlled
project, but no files are being tracked. You must add files to a svn repository to
tell it to keep track of them. Just because their in your project directory does
not mean that they are in the svn repository. If you already have files in the
project directory, ask Subversion to track them:

svn add <filenames>

In many cases, you can use the wildcard * to signify all the files in the directory.
Similarly, whenever you create a new file (like a new .java file) add it to the
repository. It’s generally good practice to only keep track of files that you
actually create and edit (e.g. .java files or .cpp files) and not compiled files (like
.class or .o files).

The basic cycle for Subversion is (1) to “check out” the project and put the
files into a clean directory, (2) to work on it, and (3) to “commit” your work
by having Subversion record the next version. The cycle assumes that there are
many programmers, and each time you start work, you will want new, up-to-
date copies of the files. If you are the only programmer, and you are sure that
the files are as you last left them, there is no need to check them out again. In
fact, you will see an error message if you try to check out a project and some
of the files already exist.

Finally, use Subversion to your advantage. Subversion will track the files
that you request. If you create a new file and want Subversion to track it, just
invoke Subversion with the add command.

svn add <newfile>

Do not move, rename, or delete files directly. Instead, use the Subversion equiv-
alents, like svn mv, svn rename, and svn delete. Type svn help to get a list
of all the commands.



The status command is often helpful and always reassuring. (At least it is
reassuring when you remember that no response means that Subversion has
nothing to complain about.) Just type

svn status

In case of emergency, you can discard your work on one file. The revert
command will restore a file to its state when it was last committed. See the
Subversion documentation if you need to go back further or replace several files.

svn revert filename

Similarly, you can use the revert command to recover a file that you accidently
deleted.

Whenever you finished work, check the files back in using the commit command.
Do not forget this step!

svn commit -m "Tired ... going to sleep"

(a message is always required when you commit changes and the -m flag is the
easiest way to add your message)



Make. Make is a command-line program that automates the process of com-
piling files and building programs. You may not think you need it now, but it
will become indispensable as your work becomes more complex.

Typing make <target> at the command line causes Make to create or update
the file named as <target>. There are many options that you can give, but we
will not worry about them now.

The actions of Make are controlled by a file named Makefile. When we get
started with C++, we will give you a Makefile. Later, you will write your
own. The simple Makefile below tells how to build myprogram from main.o,
part1.o, and part2.o. It then goes on to tell how to build each of the three
components. An invocation of Make will build the components recursively if
they do not already exist. Also, Make will re-build a file if any of its components
have changed since the last time it was built.

# A simple Makefile

#

# Rett Bull

# March 19, 2008

.PHONY: clean

myprogram: main.o part1.o part2.o

g++ -o myprogram main.o part1.o part2.o

part1.o: part1.cpp part1.h header.h

g++ -O -c part1.cpp

part2.o: part2.cpp header.h

g++ -O -c part2.cpp

main.o: main.cpp header.h

g++ -O -c main.cpp

clean:

rm -f myprogram main.o part1.o part2.o

The character # is the comment character; a comment lasts to the end of the
line. Like all programming files, a Makefile always has a comment at the top
that includes the purpose, author, and date.

The heart of a Makefile is of a sequence of rules of the following form.

target: prerequisites

instructions

An important (and invisible) detail: Each instruction in the list must be pre-
ceded by a tab character, not spaces!



Usually, targets are files, but a few are just words that act as placeholders—like
clean in our sample. The .PHONY directive tells Make not to look for a file
named clean.

You can specify a target on the command line by typing something like this:

make main.o

If you type simply make, the program will build the first target in the Make-
file. For that reason, programmers often define a target all or default at the
beginning of a Makefile.

A variant of our sample Makefile, which illustrates the use of variables, appears
below.

# An almost-simple Makefile

#

# Rett Bull

# March 19, 2008

CXX = g++

CXXFLAGS = -O

OBJS = main.o part1.o part2.o

.PHONY: clean default

default: myprogram

myprogram: $(OBJS)

$(CXX) -o $@ $(CXXFLAGS) $(OBJS)

part1.o: part1.cpp part1.h header.h

$(CXX) $(CXXFLAGS) -c $<

part2.o: part2.cpp header.h

$(CXX) $(CXXFLAGS) -c $<

main.o: main.cpp header.h

$(CXX) $(CXXFLAGS) -c $<

clean:

rm -f myprogram $(OBJS)

The variables like CXX and OBJS are simply abbreviations for the longer ex-
pressions to the right of the equals sign; they are used just as constants are
in programs. The symbol $@ is an abbreviation for the current target, and $<
stands for the first prerequisite.



Make tries very hard to “do the right thing.” Sometimes it appears to be reading
our minds, and at other times it can be mysterious or downright stubborn. One
simple example occurs when we ask it to make a file secondary.o. If no rule
exists in the Makefile, Make will look for a file secondary.c and run the
C compiler on it. Failing that, it will look for a file secondary.cpp and run the
C++ compiler. If even that fails, it will look for files in FORTRAN or other
languages. There is no real magic here; Make is simply using an extensive set
of built-in rules.

As you can see, the Makefile is complicated and rule specifications can easily
get out of hand. The best advice for now is to keep things simple and use only
the basic features of Make.


