
Compuer Science 62

Assignment 11

Due 5pm on Wednesday, May 5, 2010

For our final assignment, you will be playing with some graph algorithms.

For the first part, you will create a collection of general graph functions in

C++. Your functions will apply to any graph, provided it is presented in

the correct form. Then, in the second part you will translate movie rating

data from Netflix into graphs and analyze the graphs with your implemented

functions.

For this assignment you should make liberal use of the STL structures,

like list, map, set, and vector. In contrast to the previous assignment, all

the pointers should be hidden inside the STL structures. It is unlikely that

your code will contain any pointers. You will use several iterators, however.

Before getting started, read through the whole document, so you under-

stand what resources are available and what you are required to do.

Graph algorithms

You are to write three graph functions corresponding to three graph prob-

lems discussed in class: shortest paths, connected components and cycles.

Graphs are specified using an adjacency “map”: map<int,list<int> >.

Each vertex is an integer, and the map provides a list of the neighbors of

any vertex. The vertices need not be consecutive integers nor in a particular

range, for example the vertices could be 10, 100 and 15.

The three functions you need to implement can be found in the header file

graph_operations.h, which can be found in /common/cs/cs062/assignments/

assignment11:

list<list<int> >

grop_connected_components(const map<int, list<int> > &adjMap);

1



list<int>

grop_one_cycle(const map<int, list<int> > &adjMap);

map<int, list<int> >

grop_shortest_paths(int source,

const map<int, list<int> > &adjMap);

Notice that each function name begins with grop , short for “graph op-

eration.” Such prefixing is a common approach in C++ to avoid naming

conflicts and to identify all the functions that appear in a particular compi-

lation unit.

Each function takes an adjacency map as an argument. The map is

passed by const reference to avoid copying and to prevent the map from

being corrupted.

Implement these three functions in a file graph operations.cpp. You

may write auxiliary functions in the same file, but do not change the header

file.

grop connected components uses depth-first search to return the list of

connected components. Each component is itself a list. The order of

the components, and the order of vertices within a component, is not

specified.

grop one cycle uses depth-first search to return a cycle, if there is one. If

the graph is acyclic, the result is an empty list. Otherwise, the list

specifies a cycle as a list of three or more vertices that starts and ends

with the same vertex. If multiple cycles exist than any cycle may be

returned.

grop shortest paths uses Dijkstra’s algorithm and returns a map of short-

est paths. Notice that in our case the edge weights are intrinsically 1,

but we’d still like you to implement it using Dijkstra’s. Suppose that

sp is the map returned. For each vertex v which is reachable from

source, sp[v] is the list of vertices on a path from v back to source.

A path in our case consists of a list of vertices and should include both

v and source. The path from source to source is just the single

node source. There may be several shortest paths; your function will

provide only one. The vertex v will not appear in the map sp if there

is no path between v and source.

2



You will also need our priorityqueue62 class from Assignment 9 to

implement Dijkstra’s algorithm. I have included a working copy in the

starter file, though, you are welcome to use yours from this assignment if

you’d like.

Testing

Below are seven easy-to-generate graphs that you can use for testing. I

strongly encourage you to utilized these methods to test your graphs. Pick

the appropriate ones for testing your code. A module of C++ functions that

produce these graphs can be found in graph examples.cpp in the starter

directory for this assignment. The functions also provide examples for using

maps and iterators.

i. An n-cycle: The vertices are integers from 0 through n − 1. The

vertices u and v are connected by an edge if u − v = ±1 or u − v =

±(n− 1). There is one connected component, every shortest path has

length at most n/2, and there is a unique cycle of length n.

ii. A complete graph on n vertices: The vertices are integers from 0

through n − 1. Every pair of distinct vertices forms an edge. There

is one connected component, every shortest path has unit length, and

there are many cycles.

iii. An empty graph on n vertices: The vertices are integers from 0

through n−1. There are no edges. There are n connected components,

no paths, and no cycles.

iv. A heap: The vertices are integers from 0 through n−1. The neighbors

of a vertex v are (v−1)/2, 2v+ 1, and 2v+ 2, provided those numbers

are in the range for vertices. There is one connected component, the

paths are short, and there are no cycles.

v. A truncated heap: The vertices are integers from m through n− 1.

The edge relationship is the same as for the heap. There are n−1−2m

edges, m + 1 connected components, and no cycles. The paths, when

they exist, are short.

vi. Equivalence mod k: The vertices are integers from 0 to n−1, where

k ≤ n. The vertices u and v are connected by an edge if u − v is

3



evenly divisible by k. There are k components, and each component

is a complete graph.

vii. Empty and full triangles: The vertices are integers from 0 to 5.

There are three edges, joining vertices 3, 4, and 5. This graph can test

whether your cycle function searches all the connected components for

cycles.

Real data

Now that you have some working methods, we will construct graphs that

are much larger than the examples above by using data from the Netflix

challenge. The file movie_reviews.txt also in the starter directory contains

information about movie viewers and their ratings of movies. A typical line

in the file looks like this:

41:30,4;191,3;197,4;357,3;468,4;954,4;

The first number, before the colon, identifies a Netflix customer. Following

the colon is a sequence of pairs of numbers that identify the movie and the

customer’s rating or the movie. In this example, the customer gave movie 30

a rating of 4 and movie 191 a rating of 3. Each line of the file corresponds

to one customer. The customer in this example rated only six movies. Some

of the lines are much longer.

In a file named graph movie.cpp, write a function that reads the move

data file and stores the data in a structure that maps viewers to lists of

movie-rating pairs:

map<int,list<pair<int,int> > > read_reviews(string filename);

Note that this is different than our expected format for our functions

written above, since we have a list of pairs. We now want to construct a

graph where the vertices are the Netflix customers. Write a function that

takes the data structure you just created and two integers, assumed to be

“viewers” or keys in the map, and returns true or false, according to

whether the two vertices are adjacent:

bool adjacent(int v,

int w,

const map<int,list<pair<int,int> > > & reviewMap);

4



The criterion for adjacency can change, and you should experiment with

several different alternatives (you will need to provide results for three in

the end). An easy one with which to begin is that two viewers are adjacent

if there is at least one movie that both viewers have rated. Another, stricter

criterion is that the two viewers have three movies in common and they

have given the same rating to each of the three.

Now, write another function that uses the map derived from the movies

file and the adjacent function to create a graph that can be studied with

the graph functions that you wrote:

map<int,list<int> >

create_graph(const map<int,list<pair<int,int> > > & reviewMap);

Notice that the create graph method will call your adjacent function

to determine if two users are adjacent or not.

Finally, write a main function that uses the methods above (including

some from the first part) to print the number of connected components

and size of each component in the graphs that you create. Run your

program with three different notions of adjacency, and create a text file

named results.txt in which you describe your results. The final version of

graph_movie.cpp should include your definition of adjacent that produces

the results that you deem most interesting.

Keep in mind that your program may be tested on a file movie_reviews.

txt that is different from the one supplied. You can assume that the file

will have no blank lines, and each viewer number appears at most once, but

some viewers may have rated no movies.

Submission

Submit your three files in a folder with you name, assignment number, etc.

Make sure your code follows the specifications above exactly and that your

files are well-documented files in the usual way with Javadoc comments, etc.

graph_operations.cpp

graph_movie.cpp

results.txt

5



Grading

criterion points

connected components 3

cycles 3

shortest paths 3

read reviews 2

adjacent 2

create graph 2

results.txt 4

follows specification 2

appropriate comments (including JavaDoc) 2

style and formatting 1

submitted correctly 1

Hints

• Be careful with your parameter passing. Remember if you pass a class

(object) using call-by value, it will copy everything. Any modifications,

etc. you make to that object locally in the method will NOT appear

outside of that method. Most of the time, you’ll want to pass classes

(objects) using call-by reference or call-by constant reference.

• In addition, if you don’t use call-by reference, in some situations you

will have run-time/memory issues because of the data copying, for

example, if you have a recursive method that passes the graph along.

• It may take a minute or two for your create graph method to generate

the final graph. If you want to check that it’s working, you can print

out something in your loop to see the progress.

• The istringstream class in #include sstream will be useful for pars-

ing the movie data. Review your use of this class from Lab 13.

A note on the data.

The data in the file movie reviews.txt was extracted from the Netflix

Prize sample data set. See http://www.netflixprize.com for more details

about the prize and the data. We are bound by the conditions stated in

/common/cs/cs062/netflix/README:

6



The data set may be used for any research purposes under the
following conditions:

• The user may not state or imply any endorsement from Netflix.

• The user must acknowledge the use of the data set in
publications resulting from the use of the data set, and must
send us an electronic or paper copy of those publications.

• The user may not redistribute the data without separate
permission.

• The user may not use this information for any commercial or
revenue-bearing purposes without first obtaining permission
from Netflix.

The full set contains 480,189 viewers and 17,770 movies. Our data are

comprised of the subset containing the 1495 viewers with the lowest serial

numbers and the first 1000 movies. We have no direct way of identifying the

viewers, but we can identify the movies. The file that associates numbers to

movie titles is /common/cs/cs062/netflix/movie titles.txt.

7


