
Compuer Science 62

Assignment 5

Due 6:00pm on Friday, March 5, 2010

This assignment is mostly about stacks, but it will also give you practice
with iterators and graphics. When you complete the assignment, you will
have a graphics application that simulates a calculator.

Please read Section 10.5 of Bailey’s book in preparation for the assign-
ment. The important parts are the definitions of the stack operations. No-
tice also that our project differs from Bailey’s in that our stack contains
only integers. The terms add, exch, and so on are operations on the stack.

Each of the four steps is designed to be straightforward, but each step
depends on its predecessors. We strongly suggest that you complete one
step before moving on to the next.

1 IntArrayIterator

We will need to iterate, possibly in either direction, across a segment of an ar-
ray. Write a class named IntArrayIterator which implements Iterator<Integer>
that has the three methods required of an iterator (with remove doing noth-
ing, as usual) and one constructor:

public IntArrayIterator(int[] data, int start, int stop)

The iterator produced by the constructor has two different functionalities; it
can iterate up or iterate down. Interchanging the values passed to start and
stop changes the direction in which the array is traversed, but it does not
change the portion of the array under consideration. The iterator produces
values from the array data according to the following specifications:

• If start < stop, the iterator produces values from data[start] up
through data[stop-1]. The values are produced in the order in which
they appear in the array.

1



• If stop < start, the iterator emits the values from data[start-1]
downward through data[stop]. The values are produced in reverse
order from their appearance in the array—from high indices to low.

• Obviously, if start = stop, the iterator produces no values at all.

• The iterator will, without any help from you, generate an error if any of
the indices are outside the bounds for the array. You are not required
to check those bounds, but your documentation should warn the user.
And, later, when you are using this class, you must provide parameters
that are within bounds.

2 ArrayStack

The next class is an array-based stack of integers. Write a class ArrayStack
which implements Iterable<Integer>. Work directly with an array and
indices; do not use any of the list, vector, or stack classes from structure5
or the Java API. You must have one constructor

public ArrayStack(int capacity)

which creates an array with capacity elements. Besides the array, you will
need at least one other instance variable. Implement these standard stack
methods, with assert statements to guard against pushing onto a full stack,
or popping or peeking with an empty one.

void clear()
int peek()
int pop()
void push(int value)
boolean isEmpty()
boolean isFull()
int size()
String toString()
Iterator<Integer> iterator()

The size method returns the number of elements currently in the stack.
The toString method returns a string that lists the elements in the stack,
like these:

<ArrayStack:>
<ArrayStack: 0 1 2>

2



The convention for toString is that the stack grows to the right. The
iterator method returns an object of type IntArrayIterator that pro-
duces all the elements in the stack, running from the base to the top.

Suggestions: Keep it simple. With the possible exception of toString,
the methods will only be two or three lines long. Use the fact that the class
is Iterable to help with toString.

3 PostfixStack

Write a class PostfixStack which extends ArrayStack. Give it two con-
structors:

public PostfixStack(int capacity)
public PostfixStack()

The first will create a stack of the specified capacity, and the second will
create a stack with the default capacity of 64.

By extending ArrayStack, PostfixStack will inherit all the methods
from ArrayStack. In addition, implement the methods below. Use the pub-
lic methods available to you via ArrayStack. You should NOT be directly
modifying the underlying array, etc. of ArrayStack.

Each method represents an operation that removes one or two elements
from the stack, computes a new value, and pushes that value back onto the
stack. The specifications are given in Section 10.5 of Bailey’s book. Be sure
that you understand, in the cases of subtraction and division, the order of
the arguments. Use assert statements to guard against empty- or full-stack
errors.

void dup()
void exch()
void abs()
void neg()
void add()
void sub()
void mul()
void div()

Override the toString method from ArrayStack so that it prints the name
PostfixStack instead of ArrayStack.

3



Add one additional method of your choice that carries out an operation
on the top one or two elements of the stack. Possibilities include square,
factorial, and xy. Give your method a descriptive name.

You are not asked to implement the full language simulator described in
Section 10.5. Simply provide a class with the above primitives for arithmetic
and manipulation of elements on the stack.

For testing, you might write a main method to exercise your calculator.
If pc is a PostfixStack object, then the following sequence should produce
a stack whose only element is 47. Remember to remove the main method
when you are finished testing.

pc.push(2); pc.dup(); pc.push(5); pc.exch(); pc.dup();
pc.dup(); pc.mul(); pc.mul(); pc.mul(); pc.add();
pc.push(7); pc.push(2); pc.sub(); pc.add();

Suggestions: As with ArrayStack, the constructors and methods are
short and simple. Be sure that PostfixStack works correctly before moving
on to part 4. It will be very difficult to sort out errors if they occur in the
underlying calculator and the graphical interface.

4 GraphicsCalculator

For the last part you will complete a graphics shell for your calculator. You
can view a sample implementation in the lab by giving the command

/common/cs/cs062/assignments/assignment5/bin/calculator

in a terminal window. Notice that the calculator uses postfix notation: to
multiply 4 by 7 you would press these keys:

4, Enter, 7, Enter, *

There are files Calculator.java and OpButtonListener.java which
do the majority of the work. You can find them in

/common/cs/cs062/assignments/assignment5/src/

You will need to do the following:

a. Your main task is to add the facility for processing digits. Create a
class DigitButtonListener be modeled on OpButtonListener. The
DigitButtonListener must have a constructor to match the use in
Calculator, and it must make a call to the method addDigit in
Calculator.

4



b. Implement the addDigit method in Calculator.

c. Add two new buttons between Clear and / which add new facilities
from PostfixStack. One of them should correspond to the method
that you chose to add to PostfixStack. The other should correspond
to one of the other PostfixStack operations, like dup, neg, or exch.
Give your buttons descriptive labels.

We must specify precisely the behavior of calculator and its the buttons.
First of all, we adopt the convention that the stack is never “too empty.” Ze-
roes appear at the bottom of the stack whenever more elements are needed.
Do not change the underlying PostfixStack; simply have Calculator en-
sure that the stack always has one zero at the bottom. If an operation like
Pop or Clear empties the stack, we push a zero back onto it. When two
elements are needed and only one is available, we push another zero and
exchange it with the existing element. This convention has already been
built into the code for Calculator.

Next, the digit buttons operate on the top of the stack. The first time
a digit button is pressed, a new value is pushed onto the stack. Subsequent
digits change the element on top of the stack, via a pop then a push. The cal-
culator uses the boolean variable numberInProgress to remember whether
the most recent button is a digit. Pressing a button that is not a digit
ends the accumulation of digits and carries out the operation of that but-
ton. Therefore, it is not necessary to press Enter after the 7 in the example
above.

You will implement the facility for collecting digits in the method addDigit.
Remember that the way to compute the value of an integer when a new digit
is appended on the right is to multiply the original integer by ten and add
the value of the digit.

Finally, the display at the top of the window will normally contain the
value of the integer on the top of the stack. It must be updated after each
change to the stack with a call to display.setText. The display will have
an error message when there is an attempt to divide by zero.

Submission

Submission. Write your code carefully and clearly. Follow the specifica-
tions precisely, because your classes may be tested in ways that you do not
suspect. As previously, we will look at your Javadoc documentation.

5



Submit the final versions of these files, with the names specified, in the
usual way.

IntArrayIterator.java
ArrayStack.java
PostfixStack.java
Calculator.java
DigitButtonListener.java

Grading

You will be graded based on the following criteria:

criterion points
IntArrayIterator: iterates both up and down appropriately 3
ArrayStack: method functionality (must be array based!) 3
ArrayStack: appropriately handle errors with asserts 1
PostfixStack: method functionality 3
PostfixStack: appropriately handle errors with asserts 1.5
Calculator 3
Extra method/calculator functionality .5
followed specification 2
appropriate comments (including JavaDoc) 3
style and formatting 2
submitted correctly 1

Notes

Here are some additional notes that are interesting but not directly relevant
to the assignment:

The listeners. Because the operations are so fast, we “cheat” a bit on this
assignment. Instead of queuing button events to the Calculator class,
the listener objects execute the code for operations directly. Generally,
your listener methods should get in and get out, and not hang around
in long methods.

6


