
Compuer Science 62

Assignment 3

Due 11:59pm on Tuesday, February 16, 2010

All of the sorting algorithms we’ve looked at so far assume that the data
is in memory and that we can swap data elements efficiently. Sometimes,
because of the size of the data you cannot fit all of it in memory. In these
situations, many of the traditional sorting algorithms fail miserably; the
algorithms do not preserve data locality and end up accessing the disk fre-
quently resulting in very slow running times.

For this assignment, you will be implementing an on-disk sorting algo-
rithm that is designed to use the disk efficiently to sort large data sets. The
sorting algorithm will work in two phases:

• First, your sorting algorithm breaks the data into reasonable sized
chunks and sorts each of these individual chunks. This is accomplished
by reading a chunk of data, sorting it, writing it to a file, then reading
more data, etc. At the end of this phase, you will have a number of
files on disk that are all sorted.

• Second, you will need to merge all of these files into one large file. This
is accomplished by pair-wise merging of the files (very similar to the
merge of MergeSort) and then writing out the result to a new, larger
merged file. Eventually, all of the files will be merged to one large file.
Note, this can be done very memory efficiently.

1 Getting started

As usual, create a new project in Eclipse and copy the files over from
/common/cs/cs062/assignments/assignment3/ in to the source directory
of your newly created project.

1



2 On-disk sorting

I have provided you with a skeleton class that you will need to fill in the
details for. I encourage you to add additional private methods, but do not
change the names or parameters of the methods I have provided you. This
will make our life much easier when we grade the assignment. As an aside,
I have made some of the methods protected where normally I would have
made them private to, again, assist us in grading.

You will need to fill in the following methods:

• OnDiskSort: the constructor for the class. Make sure that you under-
stand what all of the parameters do. maxSize is the maximum number
of Strings that can be read in to memory at any one time. You will
need to created temporary files along the way (for example, to store
the sorted chunks). This should be done in the workingDirectory
directory (which is also just a File). Make sure you clear the working
directory when you’re done. sorter is the sorter that you should use
to sort each chunk. outputFile will contain the final result of your
sorting.

• sort: this is the public method that will be called when you want to
sort new data. For this assignment, we will only be sorting String data
(notice that WordScanner is an Iterator<String>). This method will
read in the data a chunk at a time, sort it using the sorter and then
call the mergeFiles method to merge all the sorted files.

• mergeFiles: takes an ArrayList of Files, each of which should contain
sorted data and then uses the merge method below to eventually merge
them into one large sorted file. Notice that the merge method only
merges two files at a time. The easiest way to merge all of the n sorted
files is to merge the first two files, then merge the third file with the
result of merging the first two files, then the fourth in, etc. This is not
the most efficient way of doing it, however, it will make your life easy
(see the extra credit for doing it a better way). NOTE: you cannot
read and write to a file at the same time, so you will need to use
another temporary file to store your temporary results as you merge
the data.

2



• merge: take two sorted files and merge them into one sorted file. This
is very similar to the merge method of MergeSort. The main differ-
ence is that rather than merging from two arrays (or ArrayLists) you
are merging two files. You should not simply read in the data
from both of these files and then use the merge method from
MergeSort. We are trying to be memory efficient and this would de-
feat the purpose. Instead, you should open BufferedReaders to both
of the files and then, reading one line at a time, read either from the
first file or the second and write that directly out the the output file,
depending on the appropriate ordering. Besides the variables for doing
the file I/0, you should only need two String variables to keep track
of the data.

To assist you, I have also provided a few helper methods in the OnDiskSort
class that you may find useful. If there is any confusion about what these
methods do, please come talk to me. In addition, these helper methods may
also help you understand basic Java file I/O.

3 Extra Credit

As I mention above, this is not an efficient way to merge all of the sorted
chunks. Once you have things working above, for extra credit, implement a
more efficient mergeFiles method. This is optional and you do not have to
do it.

If you do this, I strongly suggest making a new method (i.e. don’t
delete your original mergeFiles method, just rename is to something like
mergeFilesLinear). If you do the extra credit, put the phrase “EXTRA
CREDIT DONE” in a line by itself in the class header under the @date tag,
so the TAs know to look more closely at your method.

When You’re Done

Submission

Follow the directions on the course web page for submitting. You will only
need to submit your OnDiskSort.java class file (though it should be in a
.jar file and in an appropriately named folder). Be sure that your code is
clear, formatted properly and commented appropriately (using Javadoc...
see the first assignment for details on what’s expected for comments).

3



Grading

You will be graded based on the following criteria:

criterion points
functionality/correctness 12
cleans up temporary files appropriately 1
appropriate comments (including JavaDoc) 3
appropriate use of generics 2
style and formatting 2
submitted correctly 1
extra credit 2

NOTE: Code that does not compile will not be accepted! Make sure that
your code compiles before submitting it.

Some useful information

• File I/O in Java

For those that haven’t had any file I/O experience in java, I’ll give a
brief intro here, but also take a look at the course notes for cs51 from
last semester about streams and file I/O (you can find a link to it off
my home page) and you can also look up information about the classes
seen in the code and discussed here online at java.sun.com. For most
I/O, you’ll need to import java.io.*.

The two main classes you’ll be concerned with when doing file I/O in
java are BufferedReader for reading data and PrintWriter for writ-
ing data. To read data, you can create a new reader by:

BufferedReader in = new BufferedReader(new FileReader(...))

where “...” can be either replaced with a String or can be replaced
with a File object.

To write data, you can create a new writer by:

PrinterWriter out = new PrintWriter(new FileOutputStream(...))

4



In both cases, you will need to surround these with a try-catch to
handle the IOException.

• The file system

The file system on these computers starts at the very base directory
of ‘/’. Everything is then expanded out based on directories. For ex-
ample “/home/dave/” is two directories starting from the base, first
“home” then “dave”. The ‘/’ is called the file separator and is different
depending on the operating system (e.g. it’s ‘\’ on windows comput-
ers). Filenames can be specified as relative filenames, where they are
relative to the current location of the program (or user). Relative file-
names do NOT start with a ‘/’. It can be confusing telling exactly
where you program currently is when running it, so the best approach
when writing programs is to use a full path which starts at the base
directory. If you ever want to know where you are when you’re in
the Terminal is the pwd command (try it out, but just typing it and
hitting return!).

5


