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CS 051 Laboratory # 3
Repulsive Behavior

Objective: To gain experience implementing classes and methods.

—

Intro

The Scenario For this lab you will write a program that simulates the action of two bar magnets.
Each magnet will be represented by a simple rectangle with one end labeled “N” for north and the other
labeled “S” for south. Your program should allow the person using it to move either magnet around
the screen by dragging it with the mouse. You know that opposite poles attract, while similar poles
repel each other. So, if one magnet is dragged to a position where one or both of its poles is close to
the similar poles of the other magnet, the other magnet should move away as if repelled by magnetic
forces. If, on the other hand, opposite poles come close to one another, the free magnet should move
closer and become stuck to the magnet being dragged.

To make things a bit more interesting one should be allowed to flip a magnet from end to end
(swapping the poles) by clicking on the magnet without moving the mouse. This will provide a way
to separate the two magnets if they get stuck together (since as soon as one of them is reversed it will
repel the other).

The html version online has a working version of the code here.

In the lab As usual, copy the folder Lab3-Magnet from the cs051/labs folder into the cs51workspace
folder on your desktop. Start up eclipse and import the project. (Reminder: To do this you’ll go into
the file menu and select import. You’ll select “Existing project into workspace” and click the “next”
button. Then click on “browse” next to the “Select root directory” entry and navigate to the magnet
folder in your cs51workspace folder. When the folder is selected, push the finish button and you will
be ready to work.) The “default package” subdirectory in the left panel of eclipse will now contain three
files: Magnet.java, Pole.java, and MagnetGame.java. We’ve provided you the complete Pole class,
and initial skeletons for Magnet and MagnetGame, which you will be required to flush out, including
adding some new methods not listed.

Some Video Game Physics If you are worried that you might not remember (or never knew)
enough about magnetic fields to do this assignment, relax. First, we will be providing you with most
of the code that does the “physics”. Even if you had to write all the code yourself, you still would not
need a deep knowledge of magnetism and mechanics. Instead, you could exploit something every special
effects expert or video game author must know. Most humans observe the world carelessly enough that
even a very coarse approximation of reality will appear “realistic”. Our code takes advantage of this by
simplifying the behavior of our magnets. We never compute the force between two magnets, just the
distance between them. If they get too close together, our code moves them apart or makes them stick
together.

Despite the fact that we will provide most of the code to handle this approximate version of physics,
there are two aspects of the magnet’s behavior that will impact the code you write. The first is a
simplifying assumption. The magnets will not be allowed to rotate. They only slide up, down and
across the screen.

More significantly, there is one aspect of the behavior of the real magnets that we must model fairly
well. Above, we said that we just compute the distance between two magnets. This would not really
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be accurate enough, since it is not the distance between the magnets that matters, but the distances
between their similar and opposite poles.

Consider the two pairs of magnets shown below:

The magnets shown in the left pair are the same distance apart as the magnets in the right pair. In
the pair on the left, however, the opposite poles are close together while the similar poles are relatively
far apart. The situation is reversed in the other pair. In one case, one would expect the magnets to
attract, in the other to repel.

So it is the poles rather than the magnets that really matter when deciding whether something
should be attracted or repelled. As a result, instead of just manipulating magnet objects in your
program, you will also need objects that explicitly represent poles.

Design

We will help you design this program by identifying the classes and methods needed. In particular,
there will be two classes named Magnet and Pole and a third class MagnetGame that is an extenstion
of WindowController. We will provide the code for the Pole class. You will write the other two class
definitions.

As with the previous assignment, you should come to this lab with a written design (which we will
grade) for (at least) Part 1 of the lab. I promise you, the more time you spend thinking about the
design, the faster and easier the whole process will be.

The design should show us how you plan to organize your Magnet and MagnetGame classes to accom-
plish the actions required of the first part of this lab only. We have told you what methods each class
should have and the behavior that they should provide. You should follow the design specifications
described in class, which means you should not have any code except the class and method headers and
the variables (including constants). You should have comments describing what the class will do, what
the variables are for and what the methods will do.

We’ve provided a sample design for the first part of the laundry lab at the end of this document to
give you a better sense of what should be included in the design you bring.

Pole You will be able to use the Pole class we have defined much like one of the built-in graphics
classes in the objectdraw library. In this handout, we explain how to construct a new Pole and describe
the methods that can be used to manipulate Poles. You can then write code to work with Poles just
as you wrote code to work with FilledRects. We will see, however, that the interaction of Poles with
the rest of your program is a little more complex than that of rectangles.

A Pole’s constructor will expect you to specify the coordinate position at which it should initially
appear and the label that should be displayed (i.e. “N” or “S”). It will also require you to provide
as parameters the canvas and the Magnet to which the new pole will belong. The signature of the
constructor for the Pole class is:
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public Pole( Magnet container,
double x, double y,
String poleName,
DrawingCanvas canvas )

Since you will usually create the Poles within the code of the Magnet constructor, the name this will
refer to the Magnet that contains the Pole. Thus, the code to construct a Pole might look like:

new Pole( this, poleX, poleY, "N", canvas);

where poleX and poleY are the coordinates around which the label “N” should be displayed.
The Pole class provides several methods similar to those associated with graphical objects. In

particular, Pole’s methods will include getX, getY, getLocation, and move, which all behave like the
similarly named methods associated with basic graphic classes.

In addition, the Pole class has two more specialized methods: attract and repel. Each of these
methods expects to be passed the Pole of another magnet as a parameter. If you say,

somePole.attract( anotherPole )

then somePole and anotherPole should have opposite polarities. If somePole is a north pole, then
anotherPole must be a south pole and vice versa. The repel method, on the other hand, assumes that
the pole provided as its parameter has the same polarity as the object to which the method is applied.
Therefore, if you write:

somePole.repel( anotherPole )

and somePole is a north pole, then anotherPole should also be a north pole.
Each of these methods checks to see if the two Poles involved are close enough together to exert

enough force to move the magnets to which they belong. If so, they use the move and moveTo methods
of the magnets to either bring the magnets closer together or move the free magnet so that they are far
enough apart that they would no longer interact.

The good news is that we have already written the code for all the methods described above and
will provide these methods to you.

In summary, the Pole class provides the following methods. Note that we have given you complete
method headers here, illustrating the format to follow in defining your own methods. Think carefully
about how you will invoke each of the following methods.

• public double getX()

• public double getY()

• public Location getLocation()

• public void move( double xoff,
double yoff )

• public void attract( Pole opposite )

• public void repel( Pole similar )

Important: Do not modify the provided Pole class!

Part 1: Moving the magnets
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For the first part of this program, you should just worry about creating the magnets and moving
them around. We’ll worry about their interactions (attracting and repelling) later.

The key to this lab is the design of the Magnet class. A magnet is represented by a FramedRect and
two poles. To ensure that our Poles work well with your Magnets, each magnet should be 150 by 50
pixels. The poles should be located near each end of the magnet. We recommend locating them so the
distance from the pole to the closest end, top, and bottom, are all 1/2 the height of the magnet (i.e.
25 pixels away from each).

Your Magnet class will have to provide the methods that will enable someone running your program
to drag magnets about within a window. The Magnet class will have to include the following methods:

• public void move( double xoff, double yoff )

• public void moveTo( Location point )

• public Location getLocation()

• public boolean contains( Location point )

The headers for these methods are already included in the starter file for the Magnet class. These
methods should behave just like the corresponding methods for rectangles and ovals. In particular,
the offsets provided to the move method are doubles, someMagnet.getLocation() should return a
Location value, and someMagnet.contains(point) should return a boolean. (You will add other
methods later, but we’ll postpone discussing them until you need them.)

In order to write these methods, your magnet will need to contain several instance variables. A
magnet should consist of a rectangle and two poles, and you will need instance variables for each of
those. The constructor for a Magnet needs the following parameters:

• Coordinates of the upper-left corner of the magnet,

• The canvas that will hold the magnet

The header of the constructor for the Magnet class should be:

• public Magnet(Location upperLeft, DrawingCanvas canvas)

It should construct the framed rectangle forming the outline of the magnet (using the parameters), and
should create two poles in the correct positions inside the magnet (see the earlier discussion on the
constructor for Pole).

Once these instance variables have been declared and initialized, writing the methods should be easy.
The move and moveTo methods should simply move the rectangle and poles to their new positions. The
move method is pretty straightforward as all three items get moved the same distance, but moveTo takes
a little thought as the Pole class does not have a moveTo method. Instead you’ll need to calculate how
far to move it. (Hint: check to see how far the rectangle is moving from its current position.) The
method getLocation will simply return the location of the rectangle, while a magnet contains a point
exactly when the rectangle does.

When you have this much of the Magnet class written, you can test it by filling in some of the details
of MagnetGame, an extension of the WindowController class that creates a magnet, and then write
methods onMousePress and onMouseDrag that will allow you to drag it around. To run your program,
you need to create a new applet configuration using the Run... command from the Run menu as in the
past two labs. For this lab, set the width of the applet to 420 and the height to 400 on the Parameters
tab.

4



CS 051 Spring 2010

Once onMousePress and onMouseDrag work, it should be pretty easy to add a second magnet and
be able to drag either of them around. We suggest declaring a variable (movingMagnet) that can be
associated with the appropriate magnet and used to remember which magnet to move whenever the
mouse is dragged. This variable will be useful in other parts of your assignment as well.

As you were writing the methods for the Magnet class, you probably noticed that two additional
methods are already included there. They are getWidth and getHeight. These are used by the Pole
class in ensuring that the methods attract and repel draw the magnets appropriately in the window.

Part 2: Flipping the magnet

When you click on a magnet, it should reverse its north and south poles. Add method flip to class
Magnet that interchanges the north and south poles. Remember that you can move a Pole, and one
possible way to implement flip is to just move the north pole to the south pole’s position and vice
versa.

Add an onMouseClick method to your MagnetGame class that invokes flip.

Part 3: Interacting magnets

Finally, after you move or flip a magnet, you will need to tell the magnet to check if it is close
enough to the other magnet to move it. To make this possible, include a method named interact in
your Magnet class.

The method interact should be invoked on the moving (or changing) magnet, and should take as a
parameter the Magnet that has not just been moved or flipped. It should effect the interaction by calling
the attract and repel methods of its poles with the poles of the other magnet passed as parameters
appropriately. For simplicity, you should just check for attraction first, and only worry about repelling
after the attraction works correctly.

When writing interact you will discover you need to add two more methods in the Magnet class
to enable you to access the other magnet’s poles: getNorth and getSouth. Both of these methods will
return objects belonging to our Pole class. Also, note that the attract method that we have provided
in the Pole class calls the moveTo method that you must define in the Magnet class. If you do not fill
in the body of this method correctly, attraction will not work properly.

You will need to call the interact method every time one of the magnets is either moved or flipped.
Because you want to send the interact message to the magnet that moved and provide the other
magnet as the parameter, you will need to keep track of which is which. As we suggested above,
whenever you start dragging a magnet (i.e., in the onMousePressed method), you should associate a
name with the moving magnet. You will also find it convenient to associate a name with the resting
magnet in order to call your interact method appropriately.

When your program is finished, your Magnet class should have a constructor and method bodies
implemented for getLocation, move, moveTo, and contains, for which headers were provided.

In addition, you will need to provide the methods interact, getNorth, getSouth, and flip. We
have specifically not given you these methods so that you can start to learn about writing your own
methods. You should think carefully about the structure of the method headers for each of these. The
key questions to ask yourself are: does the method return a value? if so, what type does it return?
does the method have any parameters? if so, how many, and what are their types? To help you in
formulating your ideas, the following gives typical uses of the methods:

• someMagnet.interact( otherMagnet ); // someMagnet & otherMagnet are magnets
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• Pole theNorthPole = someMagnet.getNorth();

• Pole theSouthPole = someMagnet.getSouth();

• someMagnet.flip(); // someMagnet is a magnet

Turning in your work

This assignment is due at 11 pm on Monday evening.
Before submitting your work, make sure that each of the .java files includes a comment containing

your name. Also, before turning in your work, be sure to double check both its logical organization
and your style of presentation. Make your code as clear as possible and include appropriate comments
describing major sections of code and declarations. You can use the Format command in the Source
menu to make sure all of your indentation is consistent.

Turn in your project the same as in past weeks. Use the Export command from the File menu.
Check that the Magnet project is being exported to a new folder whose name includes your name and
identifies the lab. Then quit Eclipse and drag your folder to the dropbox folder.

Table 1: Grading Guidelines

Value Feature
Design (2 pts total)

2 pts. Well thought-out design brought to lab

Style (7 pts total)
2 pts. Descriptive comments
2 pts. Good names
2 pts. Good use of constants
1 pt. Appropriate formatting

Logical Organization (3 pts total)
1 pts. Good use of boolean expressions
1 pt. Not doing more work than necessary
1 pt. Using most appropriate methods

Correctness (8 pts total)
1 pt. Drawing magnets correctly at startup
1 pt. Dragging a magnet
1 pt. Ability to move either magnet
1 pt. Moving a magnet to the right place when attracted
1 pt. On attraction, moving the magnet not pointed to
1 pt. Flipping a magnet
1 pt. Attracting and repelling at the right times
1 pt. No other problems
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Grading Guidelines

Quick Reference for the Pole Class

This section provides no new information. It is a quick reference to the constructor and methods
provided in the Pole class that you will be using.

Constructor To create a new pole:

public Pole (Magnet parent, double x, double y, String name, DrawingCanvas canvas)
Example Usage
Pole myPole = new Pole (this, xLoc, yLoc, "N", canvas);

Accessor Methods To get information about a pole:

Getting the x coordinate of the pole’s center:
public double getX()

Example Usage
double x = somePole.getX();

Getting the y coordinate of the pole’s center:
public double getY()

Example Usage
double y = somePole.getY();

Getting the coordinate pair of the pole’s center:
public Location getLocation()

Example Usage
Location loc = somePole.getLocation();

Mutator Methods To modify a pole:

Moving the pole relative to its current location:
public void move (double xoff, double yoff)

Example Usage
somePole.move (xOffset, yOffset);

Attracting another pole if close enough:
public void attract (Pole oppositePole)

Example Usage
somePole.attract (anotherPole);

Repelling another pole if close enough:
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public void repel (Pole similarPole)
Example Usage
somePole.repel (anotherPole);
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Sample Design for part 1 of the Laundry lab

This section shows the sample design for the first part of the laundry lab. Use this to help you
understand what to include in your own sample design.

The lab contains with header:

public class Laundry extends WindowController
The laundry lab includes constants for the following values:

• LEFT BASKET X and LEFT BASKET Y - the location of the leftmost basket.

• BASKET SIZE - the size of the baskets. They will be square and all the same size.

• BASKET SPACING - the amount of space between baskets.

• SWATCH LOC - the starting location of the laundry.

• SWATCH SIZE - the size of the laundry. It is square.

The program contains the following instance variables:

• swatch - a FilledRect representing the laundry

• swatchFrame - a FramedRect drawn around the laundry. This is necessary so that we can see the
laundry when it is white. The swatch and swatchFrame will always be moved together.

• whites, darks, colors - 3 FramedRects representing the 3 laundry baskets

• correctBasket - a FramedRect representing the basket where the current swatch should be
dragged to. It will have the same value as one of whites, darks, and colors depending on the color
of the laundry.

• colorGenerator - a random int generator used to select the next color for the swatch. It will
range over the values 1 to 3 since we are selecting from 3 colors.

public void begin() method - creates the display and initializes the correct basket. It does this
as follows:

• Draw the swatch and swatch frame in the initial position. The initial color is white.

• Draw the 3 baskets labeling them “whites”, “darks”, and “colors”.

• Set correctBasket to whites since the first laundry is white.

public void onMouseClick(Location pt) method - checks if the user clicks the mouse in the
correct basket, and then changes the color of the laundry. It does this as follows:

• If the user clicks in the correct basket

– Use the random number generator to get the next color.
– If the random number generator returns 1, the next laundry will be white and the correct

basket is the white basket.
– Else if the random number generator returns 2, the next laundry will be black and the correct

basket is the darks basket.
– Otherwise, the next laundry will be red and the correct basket is the colors basket.
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