
CS 51 Spring 2010

CS 51 Laboratory # 10
Apples

Objective: To practice using String methods.

—
In this lab we’ll be implementing a version of the game
Hangman. You are encouraged to work in pairs in this lab. If you decide to work with a

partner, the two of you must do all of the design and coding together. A pair should turn in only one
copy of the program, but make sure both people’s names are on the folder and in the comments.

Hangman is a simple game in which one person, the “drawer”, thinks of a word and another person,
the “guesser”, tries to guess it. The game starts with the drawer writing down a row of dashes, with
each dash representing one letter in the word. The guesser then repeatedly guesses a letter. If the letter
appears in the word, the drawer replaces each appropriate dash with that letter. If the letter doesn’t
appear in the word, the drawer makes a note of that. The guesser is allowed some number of incorrect
guesses before they lose the game. In our case they’ll be allowed 8 incorrect guesses.

The name Hangman comes from the fact that instead of simply noting that the guesser has lost
because they’ve guessed 8 letters that don’t appear in the word, traditionally the drawer has drawn a
feature of a hanging person for each incorrect letter, with the guesser losing when the complete figure
of a hanging person has been drawn.

In our case we’ll be playing a version of the above game called Apples. In this version, the drawer
(your program) draws a tree with 8 apples, and each incorrect guess by the guesser causes one apple
to fall off the tree. When all the apples are gone, the guesser has lost.

Below is our version of the game:

The online version of this lab handout includes a demo version of this program. You can play with it
to see what we have in mind.

1



CS 51 Spring 2010

Notice that guesses in either uppercase or lowercase are acceptable. Furthermore, nothing happens
if you guess a letter that you’ve already guessed before.

Overview Your program will consist of four main classes:

Dictionary will be the class that loads in a file of words and that is responsible for returning a random
word.

AppleGameController will be the main class which extends WindowController and sets up the
game interface.

AppleGame will be the class that maintains the state of the game.

AppleGameDisplay will be the class that maintains the image of the apple tree.

We will provide complete implementations of the Dictionary class and the AppleGameDisplay
classes, which are described in the following section. You’ll need to write the other two, following the
specifications below.

The Dictionary class The only thing you need to know about the Dictionary class is that the
constructor has the following signature:

public Dictionary(String filename)

and that it has one important method:

public String getRandomWord()

The file passed to the constructor should contain one word per line. We’ve included such a file and
an appropriate constant in the AppleGameController class. The method gives you a random word
from the dictionary.

The AppleGameDisplay class This class deals with drawing the tree with the apples and provides
methods that let you remove an apple and that let you refill the tree. The signatures for the constructor
and public methods are:

public AppleGameDisplay(int numApples, DrawingCanvas canvas)
public void fillTree()
public int getNumApplesLeft()
public void removeApple()

You can read the comments in the provided code to see more what these methods do, but most
should be intiutive from their names.

The AppleGame class The AppleGame class will manage the state of the game. This involves three
basic things:

• You need to keep track of the state of the game. You may NOT use arrays to keep track of
things. Instead, we suggest you use Strings and appropriate operatios to keep track of the state.
Don’t forget that Strings are immutable!

• Generate and update state of the tree using an AppleGameDisplay object.

2



CS 51 Spring 2010

• Generate and update the textual display of the game.

The constructor for AppleGame should have the following signature:

public AppleGame(int numApples, String wordfile, DrawingCanvas canvas)

and should have the following methods:

public void guessLetter(char c)

which takes a character c and, if the character hasn’t already been tried, determines whether or not it
appears in the word, and updates both the text and the picture accordingly.

public void newGame()

which resets both the text and tree display, and which chooses a new word from the dictionary. The
constructor for AppleGame should have the following signature:

public AppleGame(int numApples, String wordfile, DrawingCanvas canvas)

The AppleGameController class The AppleGameController class manages the overall game. The
constructor should setup the GUI so that there’s a JButton labeled “New Game” and a JTextField
for entering guesses.

The user interacts with the game by entering a letter into the field and pressing enter. If the letter
string entered is more than one character or is not a letter then the program should not respond, and
should again prompt the user to enter a letter.

Design. This week we will again require that you prepare a written “design” for your program before
lab. At the beginning of the lab, we’ll come around and briefly examine each of your designs to make
sure you are on the right track. At the same time, we’ll assign a grade to your design.

Implementation. As usual, we suggest a staged approach to the implementation of this program.
This allows you to identify and deal with logical errors quickly. The size of your applet should be 300
pixels wide by 525 pixels tall.

• Start by getting the initial GUI setup so that the textfield and the button are in the right place.

• Now write the constructor and the newGame method for the AppleGame class, ignoring the tree
display. Make sure you can choose a new random word from the dictionary, and that you can
display the right number of dashes. Add in the listener in the AppleGameController class and
verify that the New Game button causes a new word to be chosen.

• Next write the guessLetter method for the AppleGame class. Again, ignore the tree display, and
just make sure that your code correctly determines whether the letter appears in the word and
that it updates the text display appropriately. Add in the listener for the textfield and verify that
the GUI works correctly.

• Finally, add in the code that uses the AppleGameDisplay class.

3



CS 51 Spring 2010

Submitting Your Work The lab is due at 11 PM on Monday as usual. When your work is complete
you should deposit in the dropoff folder a folder that contains your program and all of the usual files
needed by Eclipse. Make sure the folder name starts with your last name and contains the phrase
“Lab10”. Also make sure that your name is included in the comment at the top of each Java source
file.

Before turning in your work, be sure to double check both its logical organization and your style of
presentation. Make your code as clear as possible and include appropriate comments describing major
sections of code and declarations.

Sketch of Dictionary class

// Initializes the dictionary with the words in filename; assumes
// one word per line.
// only loads in first MAX_WORDS if filename is larger than that
public Dictionary(String filename)

// returns a randomly chosen word from the dictionary
public String getRandomWord()

Sketch of AppleGameDisplay class

// constructor takes the number of apples and the canvas
// draws the initial tree with numApples apples, randomly
// placed.
public AppleGameDisplay(int numApples, DrawingCanvas canvas)

// resets the tree to show all apples
public void fillTree()

// returns the number of apples left on the tree
public int getNumApplesLeft()

// removes an apple from the tree
public void removeApple()

}

4



CS 51 Spring 2010

Table 1: Grading Guidelines

Value Feature
Design preparation (4 points total)

2 points AppleGameController class
2 points AppleGame class

Syntax style (5 points total)
2 points Descriptive comments
1 points Good names
1 points Good use of constants
1 point Appropriate formatting

Semantic style (4 points total)
1 point Conditionals and loops
1 point General correctness/design/efficiency issues
1 point Parameters, variables, and scoping
1 point Miscellaneous

Correctness (7 points total)
1 point GUI works
1 point game stops and restarts correctly
3 points handles letters input correctly
1 point text display correct
1 point tree display correct

Extra Credit (2 points maximum)
.5 point Better text/tree graphics
.5 point Better interface

5


